写点什么

Netflix 基于 Redis、Kafka 和 Elasticsearch 构建高吞吐优先队列 Timesone

  • 2022-10-20
    北京
  • 本文字数:1662 字

    阅读完需:约 5 分钟

Netflix基于Redis、Kafka和Elasticsearch构建高吞吐优先队列Timesone

最近,Netflix 公布了它是如何构建Timestone的——一个高吞吐、低延迟的优先队列系统。Netflix 使用 Redis、Apache Kafka、Apache Flink 和 Elasticsearch 等开源组件来构建这个队列系统。Netflix 的工程师们表示,他们之所以要构建 Timestone,是因为他们无法找到满足其所有要求的现成解决方案。


其中一个需求是不需要在消费者端进行任何锁定或协调的情况下将某些工作项标记为不可并行。这一需求意味着在属于同一工作集的前一个项目完成之前,Timestone 不应该发送消息。Timestone 引入了“独占队列(Exclusive Queue)”的概念来实现这一目的。


Netflix 的软件工程师 Kostas Christidis 解释了独占队列的工作原理。


独占队列被创建后将与用户定义的独占键相关联——例如,“project”。所有发布到该队列的消息都必须在其元数据中携带此键。例如,带有"project=foo"的消息将被接收到独占队列中,不包含该键的消息将不会进入独占队列。在这个例子中,与独占键对应的值是“foo”,也就是消息的独占值。独占队列的约定是,在任何时间点,每个独占值最多只能有一个消费者。因此,如果我们示例中以“project-”为前缀的独占队列中有两个消息的键值对为“project=foo”,并且其中一个消息已经分配给了一个消费者,那么另一个消息就不能退出队列。


下图描绘了这个示例。



当 worker_2 发出出队列调用时,会收到 msg_2 而不是 msg_1,即使 msg_1 具有更高的优先级


来源:https://netflixtechblog.com/timestone-netflixs-high-throughput-low-latency-priority-queueing-system-with-built-in-support-1abf249ba95f


另一个需求是,在任何给定的时间,一条消息只能分配给一个消费者。这很重要,因为 Cosmos 种的工作负载往往是资源密集型的,并且可能扇出数千个动作,这个需求的目标之一便是减少资源浪费。这个需求排除了最终一致性解决方案,这意味着 Netflix 的工程师想要的是队列级别的线性一致性


Netflix 工程师通过为每条消息维护一个消息状态来实现这一需求。当生产者将消息入队时,消息将被设置为“Pending”或“Invisible”状态,这取决于消息的超时设置(可选)。当消费者将挂起的消息从队列中取出时,它将获得该消息的独占租约,Timestone 将该消息设置为“Running”状态。在这个阶段,生产者可以将消息标记为“Completed”或“Cancelled”。每条消息最多可以尝试有限的取出次数,然后 Timestone 将其标记为“Errored”状态。下图说明了所有可能的状态转换。



来源:https://netflixtechblog.com/timestone-netflixs-high-throughput-low-latency-priority-queueing-system-with-built-in-support-1abf249ba95f


Timestone 服务器提供了一个基于 gRPC 的接口。所有 API 操作都在队列作用域内。所有修改状态的 API 操作都是幂等的。记录系统是一个 Redis 集群。在将响应发送回服务器之前,Redis 会将每个写请求持久化到事务日志中。在 Redis 内部使用了一个按优先级排序的排序集代表每个队列。消息和队列配置以散列值的方式存储。


Christidis 提到了 Netflix 工程师如何用 Redis 实现原子性:


几乎所有 Timestone 和 Redis 之间的交互都写在 Lua 脚本中。在大多数 Lua 脚本中,我们倾向于更新大量的数据结构。由于 Redis 保证每个脚本都是原子执行的,所以成功执行脚本意味着可以保证系统处于一致的(在 ACID 意义上)状态。



来源:https://netflixtechblog.com/timestone-netflixs-high-throughput-low-latency-priority-queueing-system-with-built-in-support-1abf249ba95f


为了实现可观察性,Timestone 捕获关于传入消息及其状态间转换的信息,并将其保存在 Elasticsearch 的两个二级索引中。当 Timtstone 服务器从 Redis 获得写入响应时,它将其转换为发送到 Kafka 集群的事件。有两个分别对应 Timestone 两个索引的 Flink 作业,消费来自相应 Kafka 主题的事件,并更新 Elasticsearch 中的索引。


Netflix 创建 Timestone 是为了满足其媒体编码平台 Cosmos 的需求。Timestone 还支持Conductor——Netflix 的通用工作流编排引擎,作为大规模数据管道的调度器。


原文链接

Netflix Builds a Custom High-Throughput Priority Queue Backed by Redis, Kafka and Elasticsearch

2022-10-20 08:008213

评论

发布
暂无评论
发现更多内容

读书笔记:《激荡三十年》下

lidaobing

28天写作 激荡三十年

创业失败启示录|校园微生活之留学生面对面

阿萌

28天写作 创业失败启示录 青城

正则表达式匹配ini文件的section

老王同学

也谈Python编码格式

ITCamel

Python 编码格式

Spring Boot 集成Thymeleaf模板引擎

武哥聊编程

Java springboot SpringBoot 2 thymeleaf 28天写作

从硅谷到小米,崔宝秋的25年开源人生

李忠良

28天写作

日语复习 Day02【~あっての】

IT蜗壳-Tango

程序员 七日更 日语语法

限时开放!阿里P8大师终于把这份微服务架构与实践第2版PDF分享出来了

Java 编程 程序员 微服务 架构师

详解HDFS3.x新特性-纠删码

五分钟学大数据

hadoop hdfs

JavaScript03 - window对象的方法

Mr.Cactus

JavaScript

聚焦目标,团队工作不再一盘散沙(下)

一笑

管理 目标管理 复盘 28天写作

坚持写作靠什么?

石君

输入 输出 28天写作

CMS系统——登录功能

程序员的时光

程序员 七日更 28天写作

案例研究之聊聊 QLExpress 源码 (七)

小诚信驿站

聊聊架构 规则引擎 28天写作 QLExpress源码 聊聊源码

IO和NIO的对比篇

Java架构师迁哥

Java并发编程实战(4)- 死锁

技术修行者

Java 并发编程 多线程 死锁

JavaScript02 - js的引入方式

Mr.Cactus

JavaScript

保姆级 tomcat 快速入门

田维常

tomcat源码解读

JavaScript04 - JavaScript语法

Mr.Cactus

JavaScript

JavaScript05 - JavaScript数据类型

Mr.Cactus

JavaScript

使用nodejs和express搭建http web服务

程序那些事

HTTP nodejs 异步IO 程序那些事 web服务

Python列表对象入门

赵开忠

28天写作

自动驾驶分级,小白能理解的那种(28天写作 Day8/28)

mtfelix

自动驾驶 28天写作

JavaScript01 - 基础

Mr.Cactus

JavaScript

五种IO模型

懒AI患者

io nio AIo bio IO多路复用

28天瞎写的第二百一九天:包辆三轮车上班的日子

树上

28天写作

想象力,科幻与其他「关于科幻 8/28」

道伟

28天写作

为什么印度不会成为世界工厂?

JiangX

印度 28天写作 世界工厂

一文带你学会AQS和并发工具类的关系

比伯

Java 编程 架构 面试 计算机

精选算法面试-数组III

李孟聊AI

面试 算法 数组 28天写作

【Mysql-InnoDB 系列】事务提交过程

程序员架构进阶

MySQL 架构 innodb 事务 28天写作

Netflix基于Redis、Kafka和Elasticsearch构建高吞吐优先队列Timesone_软件工程_Eran Stiller_InfoQ精选文章