写点什么

Istio 监控方案解析

  • 2019-04-08
  • 本文字数:3434 字

    阅读完需:约 11 分钟

Istio监控方案解析

大家知道,“服务网格”是当下科技行业的热门话题 ,Istio就是这一领域最流行的项目之一。Istio 由 IBM、谷歌和 Lyft 联合开发,用来解决当下微服务架构面临的众多问题。容器和 Kubernetes 的流行使微服务架构得到了广泛应用,但与此同时它们也带来了一系列全新的问题和挑战。


如今,我们所有的服务都在使用 HTTP/gRPC API 来互相通信。在传统的单体架构时代,这些通信只是在单个应用内部传递的函数调用而已。相比而言,在微服务体系中不同服务之间存在着大量的交互,更难观察、保护和监控。


现在,已经有很多资料介绍Istio的概况及其工作原理,这里我不再赘述。本文将着重讨论一个话题,也就是监控。Istio 的官方文档谈到了这方面的内容,但我花了不少时间才搞清楚它是怎么回事。所以我会在这篇教程中带你浏览一遍相关内容,这样你就能更好地理解如何使用 Istio 来监控任务了。

现状

选择服务网格(mesh)的主要目的之一是提高可观察性。直到现在,开发者都需要在自己的应用中插入诸如公共库或者New RelicDatalog这样的代理服务,从而暴露一系列指标数据;这样一来,运营就能使用监控解决方案来获取应用的终端节点指标,从而知晓系统的运行状态。但为此不得不修改代码实在很麻烦,尤其是改动或新增内容较多时更让人痛苦不堪。另外多个团队都使用这种方式做监控时,代码维护也会变得很困难。


Istio 的做法是在无需改动任何代码的前提下暴露并追踪应用行为。这是通过所谓“边车(sidecar)”的概念实现的,它是一个与我们的应用共同运行,并向中央遥测组件提供数据的容器。边车能够识别应用正在使用的协议(redis、mongo、http、grpc 等),从而嗅探出与数据请求相关的大量信息。

混合器,Istio 的“瑞士军刀”

首先来看混合器(Mixer)组件,谈一谈它的作用以及它给监控带来的好处。在我看来,所谓“混合器”最好看作是一种属性处理器。网格中的代理都会发送一组内容各异的属性,比如数据请求或环境信息之类,“混合器”会处理所有这些数据并将它们分别路由到正确的适配器上。


“适配器”是附加到“混合器”上的 handler,负责为后端调整属性数据。后端可以是对这些数据感兴趣的外部服务,诸如监控工具(如 Prometheus 或 Stackdriver)、授权后端或日志堆栈。


概念

入门 Istio 最难的过程之一是熟悉新术语。你刚以为自己好容易搞明白了整个 Kubernetes 词汇表的时候,却会发现 Istio 又多出来 50 多个新术语!


在监控这方面,以下是混合器设计中最有趣且有用的一些概念:


  • 属性(Attribute):指由混合器处理的一段数据。大多数属性是从边车发送来的,但适配器也能产生属性。在实例中会使用属性将所需数据映射到后端。

  • 适配器(Adapter):嵌入在混合器组件中的逻辑,用来将数据转发到指定的后端。

  • Handler:适配器的配置。由于一个适配器可以服务多个用例,因此将配置解耦就可以让适配器以多种设置来运行了。

  • 实例:将来自 Istio 的数据绑定到适配器模型的实体。 Istio 有一套由边车容器获取的统一属性集,这些数据需要翻译成后端语言。

  • 模板:定义实例模板的通用接口。

创建一个新的监控案例

了解过 Istio 相关的定义和概念后,我们要牢记它们的最好方法就是在真实场景中过一遍。


做这个练习时,我推荐大家充分利用 Kubernetes 的标签元数据,用它来追踪我们服务的版本迭代。一般来说,转向微服务架构后你的服务最后都会有很多版本(A/B 测试,API 版本等)。 Istio 的边车会将你的群集中的所有元数据都发送到混合器。所以在我们这个示例中,我们将利用部署的标签来识别服务的版本,并观察每个版本的使用状况统计信息。


简单起见我们先来找一个现成的项目,用谷歌微服务演示项目就行了,然后做一些修改以适用我们的方案。这个项目模拟了一个由多个组件组成的微服务架构,用来构建一个电子商务网站。


首先,我们要确保这个项目与 Istio 一起能在我们的集群中正确运行。我们使用自动注入功能在命名空间中部署所有组件,并让 Istio 自动注入边车。


$ kubectl label namespace mesh istio-injection=enabled
复制代码


警告:一定要提前创建 mesh 命名空间,并让你的 kubectl 上下文指向它。


如果启用了一个 pod 安全策略,则需要为 init 容器配置一些权限,以使其能正确配置 iptables。出于测试目的你可以使用:


$ kubectl create clusterrolebinding mesh --clusterrole cluster-admin --serviceaccount=mesh:default
复制代码


这会将默认服务帐户绑定到群集管理员角色。现在我们可以使用全资源 YAML 文档来部署所有组件了。


$ kubectl apply -f release/kubernetes-manifests.yaml
复制代码


现在你应该能看到 pod 在 mesh 命名空间中开始运行了。其中一些 pod 会出错,因为 Istio 资源还没添加进去。例如,出口流量会被阻止,currency 组件也会出错。用下面这些资源来解决问题,并通过 Istio ingress 暴露前端组件。


$ kubectl apply -f release/istio-manifests.yaml
复制代码


现在我们就可以查看正在使用你的云服务商提供的 IP 或域工作的前端了(frontend-external 服务通过云服务商的负载均衡器暴露)。


现在我们的微服务应用开始工作了,下面再进一步,将其中一个组件配置为多个版本。正像你在微服务 YAML 中看到的那样,部署会有带着应用名称的单个标签。如果我们要管理 canary 部署或运行我们应用的多个版本,我们可以添加另一个版本标签。


apiVersion: extensions/v1beta1kind: Deploymentmetadata:  name: currencyservicespec:  template:    metadata:      labels:        app: currencyservice        version: v1
复制代码


将更改应用于我们的集群后,我们可以用其他名称复制部署并更改版本。


apiVersion: extensions/v1beta1kind: Deploymentmetadata:  name: currencyservice2spec:  template:    metadata:      labels:        app: currencyservice        version: v2
复制代码


现在再次将其提交给 API。


$ kubectl apply -f release/kubernetes-manifests.yaml
复制代码


注意:虽然我们又一次应用了所有的清单,但只有已更改的清单才会由 API 更新。


一位热心读者注意到我们用了一个技巧,就是让服务选择器只指向 app 标签。这样一来流量就会在不同版本之间平等分配了。

进阶之路

现在轮到重头戏了。我们需要创建三份资源来将版本暴露为 prometheus 中的新指标。


首先,我们创建一个实例。在这里我们使用 metric 实例模板来将边车提供的值提供程序映射到适配器的输入端。我们只看负载的名称(源)和版本。


apiVersion: "config.istio.io/v1alpha2"kind: metricmetadata:  name: versioncount  namespace: meshspec:  value: "1"  dimensions:    source: source.workload.name | "unknown"    version: destination.labels["version"] | "unknown"  monitored_resource_type: '"UNSPECIFIED"'
复制代码


现在该配置适配器了。在这个示例中我们希望将指标连接到一个 Prometheus 后端。所以我们要在 handler 配置中定义指标名称,以及指标会为后端(Prometheus DSL)提供的数值类型,此外还有维度标识所需的标签名称。


apiVersion: "config.istio.io/v1alpha2"kind: prometheusmetadata:  name: versionhandler  namespace: meshspec:  metrics:  - name: version_count # Prometheus metric name
instance_name: versioncount.metric.mesh # Mixer instance name (fully-qualified) kind: COUNTER label_names: - source
- version
复制代码


最后,我们需要将这个 handler 与指定的实例(指标)链接起来。


apiVersion: "config.istio.io/v1alpha2"kind: rulemetadata:  name: versionprom  namespace: meshspec:  match: destination.service == "currencyservice.mesh.svc.cluster.local"   actions:  - handler: versionhandler.prometheus
instances: - versioncount.metric.mesh
复制代码


一旦应用了这些定义,Istio 将指示 prometheus 适配器开始收集并提供新指标。如果我们看一下 prometheus 用户界面,会发现它现在正在搜索新指标,内容类似于:


结论

微服务架构中获得良好的可观察性并不容易。 Istio 有助于简化开发者的工作,并将工作交给运营商。


一开始,处理服务网格带来的各种复杂问题可能很难。但是一旦你驯服了它,就能让监控配置标准化和自动化,并在极短时间内构建一个出色的可观察系统。

更多资料




作者简介


Fernando Ripoll


Giant Swarm 的解决方案工程师,以丰富的经验帮助客户使他们的 Kubernetes 走上正轨。


查看英文原文:https://blog.giantswarm.io/Istio-monitoring-explained/


2019-04-08 15:074575

评论

发布
暂无评论
发现更多内容

得物自研客服IM中收发聊天消息背后的技术逻辑和思考实现

JackJiang

网络编程 即时通讯 IM

第23期 | GPTSecurity周报

云起无垠

软件测试/测试开发丨ChatGPT能否成为PPT最佳伴侣

测试人

软件测试

Tower for Mac(Git客户端)

展初云

git 版本控制 Mac软件

同城售后系统退款业务重构心得 | 京东云技术团队

京东科技开发者

架构 架构设计 企业号11月PK榜 系统重构

用友签约一级央企中国一重!

用友BIP

资产管理

照片编辑软件ON1 Photo RAW 2024「Mac」

展初云

Mac Mac软件 照片编辑

Serverless,无服务器时代的创新之旅开启了吗

谐云

以云原生应用构建现代化架构的企业业务系统

谐云

CorelDRAW 2023 for Mac(矢量图形设计工具)

展初云

Mac CorelDraw 矢量设计

Gartner发布2024年十大战略技术趋势

谐云

单模光纤与多模光纤是什么呢?

小齐写代码

【PyTorch 卷积】实战自定义的图片归类

北桥苏

卷积神经网络 CNN PyTorch

「智造」第4期:用友精智工业互联网助力区域经济转型升级

用友BIP

智能制造

ElasticSearch实战指南必知必会:安装分词器、高级查询、打分机制

汀丶人工智能

中文分词 elasticsearch 检索引擎 打分机制 向量索引

企业如何开展数据管理体系建设,激活数据价值?

用友BIP

数据 数据价值

想升级企业绩效管理吗?送你一个数智化神器!

用友BIP

绩效管理

飞桨国际化应用案例:挪威广告企业Adevinta应用PaddleOCR提质增效

飞桨PaddlePaddle

广告 OCR 飞桨 飞桨PaddlePaddle

数据库|PostGreSql 和 MySql 的优劣对比

谐云

Elasticsearch实战:常见错误及详细解决方案

汀丶人工智能

Elastic Search

火山引擎ByteHouse:如何用OLAP引擎提升数字营销效果?

字节跳动数据平台

数据库 大数据 云原生 数仓 企业号11月PK榜

为什么那么多简历,AI偏偏推荐了TA?

用友BIP

智能招聘

Vert.x 教程 (二):如何打包一个 Vert.x 应用

Kevin_913

教程 Vert.x Java’

还得是PHP

谐云

VMware Workstation 17安装教程之创建普通用户

小齐写代码

能使用公司产品进行软件开发吗?

矩视智能

深度学习 工控机

技术、前沿、未来、AI:Stack Overflow 2023 年度报告重磅发布

谐云

Mac电脑文件对比合并工具 Araxis Merge pro 激活最新版

胖墩儿不胖y

文件对比 Mac软件 文件对比工具 对比工具

Istio监控方案解析_开源_Fernando Ripoll_InfoQ精选文章