2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

基于 Azure 云计算平台的网格计算,第 2 部分:开发网格应用

  • 2009-10-14
  • 本文字数:3415 字

    阅读完需:约 11 分钟

在本系列的第 1 部分,我们介绍了在 Azure 上进行网格计算的设计模型。在这篇文章中,我们将用 C#来开发一个网格应用程序以实现这个模式;而在第 3 部分,我们将首先在本地运行这个应用程序,接着在云中运行。为了实现这些功能,我们需要网格计算框架提供的辅助功能。

网格框架的角色

除非你准备编写大量的底层基础软件,那么应该为你的网格应用程序选用一个框架,来消除繁重的工作,让你集中精力于应用程序代码的编写。虽然 Azure 实现了你想在网格计算基础结构中所需的很多服务,但仍然需要在 Azure 和网格应用程序之间添加一些特定于网格的功能。一个优良的网格计算框架应该为你完成如下工作:

  • 提供对工作运行的计划调度和控制能力
  • 从底层存储中检索输入数据。
  • 为网格执行器生成任务以便执行
  • 把任务分发到可用的执行器
  • 在网格执行应用程序的时候跟踪任务的状态
  • 从执行器中收集结果
  • 把结果存储到底层存储中

下图显示了框架如何把网格应用程序和 Azure 平台结合到一起。应用程序开发人员只需编写应用程序特定的代码去加载输入数据、生成任务、执行任务和保存结果数据。这个框架提供了全部所需功能——这些功能极大地利用了 Azure 平台的特点。

在本篇文章中,我们将利用 Azure Grid ,一个 Neudesic Grid Computing Framework 的社区版本。Azure Grid 提供了 4 个软件组件,来实现列在下面的所有功能:

  • 加载器,让你可以添加自己的代码,来从底层资源中提取输入数据并生成任务。
  • 执行器角色,让你可以添加自己的代码,来执行应用程序任务。
  • 聚合器,让你可以添加自己的代码,来把结果存储回底层资源。
  • 网格管理器,让你启动工作运行,并监测它们的执行情况。

Azure Grid 只在你的网格应用程序执行期间才使用云资源,使你的费用尽量最低。底层存储保存着输入数据、结果和 Azure Grid 的跟踪数据库。云存储用于与执行器通信过程的参数传递和结果收集,且在你的网格应用程序执行的时候把它们都清空。一旦你的网格应用程序执行完成,在空闲的时候,你也可以挂起网格执行器的运行实例,那么就无需为存储和计算时间支付持续的费用。

应用程序:Fraud Check

我们将要编码的应用程序是一个虚构的欺诈检查(fraud check)程序,使用某些规则对申请者数据进行计算,以求出欺诈可能性分数。每个申请者的记录都作为一个网格任务来进行处理 。申请者记录具有这样的结构:

通过在申请者记录上应用业务规则,Fraud Check 程序可算出一个 0 到 1000 之间的欺诈可能性分数,而 0 表示最坏可能的分数。如果分数低于 500,那么申请可能被拒绝。

设计网格应用程序

在你设计网格应用程序的时候,你需要确定能把工作划分到可并行执行的独立任务的最好方法。你首先要考虑 2 个关键问题:

  • 你基于什么基础来划分工作为任务?
  • 有多少种不同类型的任务?

在 Fraud Check 这个例子中,为每个申请者记录创建单独的任务是很有道理的:为每个记录评出欺诈分数是一个原子操作,而且在所有的记录处理完成后,它们的顺序如何也无所谓。

对于 Fraud Check 而言,只需要一种任务类型,我们将其命名为“FraudScore”。FraudScore 任务就是为申请者记录算出欺诈分数。

这些任务需要读取输入数据,生成结果数据。FraudScore 的输入数据也即申请者记录,而结果数据则是欺骗分数加上一个文本字段来解释得到这个分数的原因。FraudScore 所需的参数和返回结果,连同其名称一起显示在下面。

在某些网格计算应用程序中,任务在完成工作的时候可能也需要访问额外的资源,比如数据库或 Web Services。FraudScore 没有这样的需求,不过如果需要的话,可以通过输入参数来提供必需的信息,如 Web Service 地址和数据库连接字符串。

开发网格应用程序

现在,我们的网格应用程序的输入参数、任务和结果字段已经定义好了,我们可以继续编写应用程序了。Azure Grid 只要求我们编写加载器(Loader)、应用程序任务和聚合器(Aggregator)的代码。

编写加载器代码

加载器代码负责读取输入数据,并生成附带参数的任务。大部分时候,这些数据都来自于数据库,不过 Fraud Check 编写成从电子数据表中读取输入数据。

Azure Grid 通过一个名为 AppLoader 的类,为你的加载器提供了一个可以开始编码的模板。需要实现 GenerateTasks 方法,来获取你的输入数据,生成带有任务类型名称和参数的任务。你的代码创建 Task 对象,并作为数组返回。在基类中,GridLoader,把你的任务处理为队列后放到任务执行位置的云存储中。

为了实现 Fraud Check 的加载器,我们用下面的代码替换任务创建的示例代码,以从电子数据表 CSV 中读取记录,并为每条记录创建一个任务。

输入的电子数据表的首行应该包含参数名称,而后面的行应该包含值,正如之前显示的那样。创建任务的过程很简单,就是初始化一个 Task 对象,并构造器中赋给它如下信息:

  • Project Name:你的应用程序的项目名称。这从配置文件设置中读取。
  • Job ID:工作运行的编号,一个字符串。这个值是由外部提供给 GenerateTasks 方法的。
  • Task ID:这个任务的唯一标识符,一个整数。
  • Task Type:要运行任务的名称。
  • Task Status:应该设置为 Task.Status.Pending,以表明这是一个还未运行的任务。
  • Parameters:参数名称和值的字典集合对象。
  • Results:NULL——结果将由网格执行器在执行任务后来设置。

把 Task 添加到一个列表集合中,就完成了这部分工作。一旦所有的任务都生成好,把 List.ToArray() 作为结果传递给加载器,它就会把这些任务排队到云存储中。

编写聚合器代码

编写好加载器之后,就是聚合器,其处理任务结果,并在本地存储它们。

Azure Grid 通过一个名为 AppAggregator 的类,为你的聚合器提供了一个可以开始编码的模板。需要实现 3 个方法:

  • OpenStorage,在第一个结果已经准备好可以处理的时候调用,让你有机会打开存储资源。
  • StoreResult,在每个结果需要保存的时候调用。输入参数和结果都用 XML 来传递。
  • CloseStorage,在最后一个结果已经保存好后调用,让你有机会关闭存储资源。

在基类中,GridAggregator 处理来自云存储中的结果,并调用你的方法来存储这些结果。

在 StoreResult 中,当前任务的参数和结果以如下格式的 XML 来传递:

为了实现 Fraud Check 的聚合器,我们将完成同加载器相反的事情,即把每个结果添加到电子数据表 CSV 文件中。

  • 在 OpenStorage 中,打开一个.csv 文件来接受输出,把结果写出到电子数据表 CSV 文件的行列中。
  • 在 StoreResult 中,结果(以及包含在这个上下文中的输入参数的第一个和最后一个名称)从 XML 里提取出来,写出到 CSV 文件中。
  • 在 CloseStorage 中,文件被关闭。

编写应用程序任务代码

在编写好加载器和聚合器后,还有一块功能需要编写:应用程序代码本身。AppWorker 类用来包含应用程序任务代码。当前任务被传递给一个名称为 Execute 方法,其检查任务类型,以决定执行哪些任务代码。

对于 Fraud Check,在我们的应用程序中使用 switch 语句来检查我们任务的类型——FraudScore,并执行代码基于在输入参数中的申请者数据来计算欺诈可能性分数。

FraudScore 代码的首要业务逻辑就是提取输入参数,在 Task 对象中,可以通过名称和字符串值的一个字典集合来逐一访问。

接下来,执行一系列的业务规则算出分数。下面是一个摘录:

最后,FraudScore 更新任务的结果属性。也是简单地在字典集合中设置名称和字符串值。

GridWorker 这个基类和 WorkerRole 实现了把结果排队到云存储中,稍后将被聚合器取回。

准备运行

我们已经开发好了自己的网格应用程序,准备来运行它了。稍微回顾一下我们刚刚完成的事情:使用一个框架,实现了加载器、聚合器和任务代码。我们只需编写特定于应用程序的代码。

剩下的事情就是要来运行应用程序。对于网格应用程序,你应该总是仔细测试,且首先在本地用少量任务来运行。一旦你对自己的应用程序设计和代码完整性有把握了,就可以移步到云中大规模的执行了。我们将在本系列的下一篇文章(第 3 部分)中来讲述应用程序的运行。

关于作者

David Pallmann 是 Neudesic 的咨询总监,这个公司是微软金牌合作伙伴和国家系统集成商(National Systems Integrator)。在加入 Neudesic 之前,David 在微软的 WCF 产品团队工作。他出版了 3 本技术书籍,并维护着一个经常更新的 Azure博客。他也是 Azure User Group 的发起成员。

阅读英文原文 Grid Computing on the Azure Cloud Computing Platform, Part 2


给 InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家加入到 InfoQ 中文站用户讨论组中与我们的编辑和其他读者朋友交流。

2009-10-14 01:023230
用户头像

发布了 254 篇内容, 共 70.2 次阅读, 收获喜欢 2 次。

关注

评论

发布
暂无评论
发现更多内容

腾讯看点CTO徐羽: QQ浏览器背后的推荐AI中台 | AICon

博文视点Broadview

AD域是什么意思?有什么用?

行云管家

服务器 内网 AD域

程序员35岁后的发展,欢迎一起来讨论

hanaper

vue3,对比 vue2 有什么优点?

华为云开发者联盟

Vue Vue3 vue2 diff算法 渲染API

Python基础综合练习1

在即

9月日更

眼界大开 声临其境丨胡宜峰:视频深度伪造检测技术在内容安全领域的探索与实践

网易云信

人工智能 深度学习 音视频

DataPipeline助力国际知名物流服务商,打造供应链改革新样本!

DataPipeline数见科技

web技术分享| 前端秘籍之“易容”术

anyRTC开发者

人工智能 大前端 音视频 web技术分享

Python中使用定时调度任务(Schedule Jobs)的5种方式

Regan Yue

Python 调度 9月日更

OpenMetric与时序数据库模型之主流TSDB分析

华为云开发者联盟

Prometheus Influxdb 时序数据库 tsdb OpenMetric

双赞的一体机主板能应用到哪些行业?

双赞工控

企业数字化转型选用“低代码平台”的8条建议!

优秀

低代码

选择低代码应用程序开发框架的5个关键标准

低代码小观

程序员 低代码 企业开发 低代码开发 开发框架

阿里大牛肝出的443页TCP/IP协议趣谈笔记,竟然在GitHub标星27k+

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

牛皮了!阿里大佬总结的图解Java手册在GitHub火了,完整版开源中

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

Alibaba内部最新Java架构核心宝典 (全彩版小册开源)

Java 程序员 架构 面试 计算机

密码学系列之:bcrypt加密算法详解

程序那些事

算法 加密解密 密码学 程序那些事

对象存储手把手教五 | 数据存取与加密

QingStor分布式存储

对象存储 分布式存储 数据加密

小红书严惩刷量行为:如何才能优雅的种草

石头IT视角

发布半小时登上GitHub首页的Spring Boot实战笔记,竟是京东T8编写

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

共助数据自主创新生态|DataPipeline实时数据融合平台与华为云GaussDB数据库完成兼容互认证

DataPipeline数见科技

新基建+新科技,智慧港口船舶抢抓数字化转型先机

一只数据鲸鱼

数据可视化 智慧港口 智慧船舶 智慧码头

盘点 | 主流云原生数据库技术方案

RadonDB

数据库 云原生

全链路压测流量模型

FunTester

性能测试 全链路压测 FunTester 灰度分流 流量回放

浅谈百度阅读/文库NA端排版技术

百度Geek说

大前端 百度文库

企业级数据融合平台上线,DataPipeline助力中国最大保险公司海外业务再创佳绩!

DataPipeline数见科技

Vite + Vue3 + OpenLayers 弹窗

德育处主任

大前端 地图 vite Vue3 openlayers

什么是运维?怎样快速做好运维工作?

行云管家

云计算 运维 服务器 云运维

阿里内部进阶资料:24w字的Java面试宝典,竟然在GitHub霸榜月余

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

意外发现GitHub 星标35k+ 435页网络协议深度笔记,出自华为架构师

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

一萌妹子的面试经历,美团四面三小时,成功拿到Java岗offer

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

基于Azure云计算平台的网格计算,第2部分:开发网格应用_.NET_David Pallmann_InfoQ精选文章