写点什么

Auto Scaling for Amazon DynamoDB

  • 2019-11-12
  • 本文字数:2243 字

    阅读完需:约 7 分钟

Auto Scaling for Amazon DynamoDB

Amazon DynamoDB 拥有十万多的客户,客户身处各种行业,使用案例也各不相同。这些客户依赖于 DynamoDB 在任何规模下都能提供的一致性能和覆盖全球 16 个地理区域的服务网络。最近我们注意到一个趋势,客户正在使用 DynamoDB 来为他们的无服务器应用程序提供支持。这是一个很好的搭配:使用 DynamoDB,您无需考虑配置服务器、执行操作系统和数据库软件修补或跨可用区配置复制以确保高可用性之类的事情 – 您只需创建一些表,然后开始添加数据,其他的交给 DynamoDB 处理。


DynamoDB 提供预置容量模式,可以让您设定您的应用程序所需的读取和写入容量。尽管这让您无需考虑服务器,在 AWS 管理控制台中进行简单的 API 调用或按钮单击就可以对表的配置进行更改,但客户已经在询问我们,有没有方法让管理 DynamoDB 容量变得更加轻松。


现在,我们推出了 Auto Scaling for DynamoDB,可帮助您实现表和全局二级索引容量管理的自动化。您只要指定所需的目标使用率,并提供读取和写入容量的上限和下限。之后,DynamoDB 将利用 Amazon Cloudwatch 警报来监控吞吐量占用情况,并根据需要上调或下调预置容量。Auto Scaling 对于所有新表和索引默认启用,您还可以对现有表和索引配置此功能。即使您不在左右,DynamoDB Auto Scaling 也将监控您的表和索引,并根据应用程序流量的变化自动调整吞吐量。这使您可以更加轻松地管理 DynamoDB 数据,帮助您最大程度地提高应用程序的可用性,并帮助您降低 DynamoDB 成本。我们来看看它是如何工作的……


使用 Auto Scaling


现在当您创建新表时,DynamoDB 控制台会提出一组适宜的默认参数。您可以原样接受它们,也可以取消选中“Use default settings”,然后输入您自己的参数:



以下是您输入自己的参数的方式:



目标使用率以占用容量与预置容量的比值来表示。以上参数将允许提供足够的空间,使占用容量能够在读取或写入请求突增时倍增 (请参阅容量单位计算,了解更多有关 DynamoDB 读取和写入操作与预置容量之间关系的信息)。预置容量的变化是在后台发生的。


Auto Scaling 的实际操作


为了了解这项重要的新功能的实际操作,我按照入门指南中的指示进行了操作。我启动了一个全新的 EC2 实例,安装了 (sudo pip install boto3) 并配置了 (aws configure) 适用于 Python 的 AWS 开发工具包。然后我使用 Python 和 DynamoDB 一节中的代码创建了一个表,为其填充了一些数据,并手动为该表分别配置了 5 个读取和写入容量单位。我稍作休息,以便 CloudWatch 指标形成简洁的直线,这样我就可以展示 Auto Scaling 的效果了。这是我开始应用负载之前指标的样子:



步骤3中,我修改了代码,以便继续在 1920 年至 2007 年之间随机选择年份执行查询,运行一份代码,并在一两分钟后查看了读取指标:



占用的容量高于预置的容量,导致出现了大量的受限制读取。现在就是 Auto Scaling 发挥作用的时间了!我返回控制台,单击了我的表中的 Capacity 选项卡。然后我单击 Read capacity,接受默认值,并单击 Save



DynamoDB 创建了一个新的 IAM 角色 (DynamoDBAutoscaleRole) 和一对 CloudWatch 警报来管理读取容量的 Auto Scaling:



DynamoDB Auto Scaling 将会管理警报的阈值,在扩展过程中上下移动这些阈值。第一个警报被触发,表状态更改为 Updating,同时预置了额外的读取容量:



几分钟内,读取指标中就会显示这一更改:



我启动了我修改后的查询脚本的其他几个副本,并观察额外容量的预置情况,如红线所示:



我删除了所有的脚本,然后去做其他的事情,同时等待缩减警报触发。以下是我返回时所看到的:



第二天,我检查了我的 Scaling activities,看到警报在一夜间已经触发了多次:



这在指标中也有显示:



到现在为止,对于这种情况,您需要根据预期使用情况合理设置您的读取容量,还要准备着为超额容量 (蓝线和红线之间的空间) 付款。否则,您可能将它设置得太低,忘了进行监控,而在流量攀升时容量耗尽。使用 Auto Scaling,您就可以做到两全其美:当需求增加,表明需要更多容量时自动响应,当容量不再需要时,再一次自动响应。


须知事项


DynamoDB Auto Scaling 可用于处理以大致可预测、通常为周期性的方式变化的请求速率。如果您需要处理不可预测的读取活动突增,则应将 Auto Scaling 与 DAX 结合使用 (请参阅 Amazon DynamoDB Accelerator (DAX) – 读取操作密集型工作负载的内存缓存以了解更多信息)。另外,AWS SDK 会检测受限制的读取和写入请求,并在适当的延迟之后重新尝试这些请求。


我之前提到了 DynamoDBAutoscaleRole。该角色为 Auto Scaling 提供它要扩展和收缩表和索引所需的权限。要了解更多有关这一角色及其使用权限的信息,请参阅Using the AWS Management Console With DynamoDB Auto Scaling


Auto Scaling 拥有完整的 CLI 和 API 支持,包括启用和禁用 Auto Scaling 策略的能力。如果您的流量存在一些可预测的时限性峰值,则您可以通过编程的方式禁用 Auto Scaling 策略,在设定的时间段内预置更高的吞吐量,并在之后重新启用 Auto Scaling。


DynamoDB 中的限制页面中所述,您可以按您所需的频率,根据您的需求增加预置容量 (受限于可以申请增加的每帐户限制)。对于每个表或全局二级索引,您每天最多可将容量减少九次。您将按照正常的 DynamoDB 定价为您预置的容量付费。您还可以通过购买 DynamoDB 预留容量进一步节省费用。


现已推出 此功能现已在所有区域推出,您可以立即开始使用。


-Jeff


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/new-auto-scaling-for-amazon-dynamodb/


2019-11-12 08:00913

评论

发布
暂无评论
发现更多内容

两周开发量,两小时完成!飞算JavaA电商微服务极速开发实战

飞算JavaAI开发助手

一文看清:各类机器人在不同领域的应用与发展

Techinsight

为什么传统开发工具无法解决老旧系统重构?AI给出了答案

飞算JavaAI开发助手

网易个人邮箱数据库升级:可靠性与稳定性双突破

老纪的技术唠嗑局

oceanbase 网易邮箱

新华三的网络杠杆,撬动AI智算新天地

脑极体

AI

AI界的“超能力”MCP,到底是个啥?

Comate编码助手

#AI编程 MCP 文心快码 文心快码Zulu

自研 OR 外采低代码,软件厂商如何选择?

星云低代码中间件

低代码 企业管理 系统开发 采购

文心快码已支持Kimi-K2-0905模型

Comate编码助手

编程 大模型 kimi

不再是答题机器,天润融通Agent正成为零售电商的“金牌导购”

天润融通

Oracle到ClickHouse:异构数据库ETL的坑与解法

谷云科技RestCloud

数据库 oracle 数据同步 ETL Click house

工作坊是什么意思,如何开展?AI白板助力远程在线教学

职场工具箱

效率工具 可视化 在线白板 办公软件 工作坊

企业为何仍困在“数据孤岛”?——从iPaaS重构信息流的实践路径

谷云科技RestCloud

数据库 数据孤岛 集成平台 ipaas ipaasapi

CAD【xplode】和【explode】功能的区别

极客天地

飞算JavaAI新功能解析:自动生成规则文件,规范与效率兼得

飞算JavaAI开发助手

某头部能源集团“数据治理”到“数智应用”跃迁案例剖析

袋鼠云数栈

解决方案 指标建设 数智应用 能源企业 能源转型

来WAVE SUMMIT,文心快码升级亮点抢先看!

Comate编码助手

开发者大会 AI 编程 文心快码 文心快码Zulu 百度WAVE SUMMIT

一键部署?华为云Solution as Code如何成为AI秘籍?

脑极体

AI

企业级开发重构成本高?试试这款AI驱动的Java开发工具

飞算JavaAI开发助手

KubeBlocks for MSSQL 高可用实现

小猿姐

云原生 k8s mssql

连锁门店可用性监测和进程监测最佳实践

观测云

可用性监测

让AI成为企业新生产力!天润融通AI Agent实战营上海站圆满举办

天润融通

雅菲奥朗SRE知识墙分享(七): 『可观测性的定义与实践』

雅菲奥朗

运维 可观测性 SRE

解码鸿蒙有礼:华为砸下真金白银,花钱赚吆喝还是格局再打开?

最新动态

一键部署?华为云Solution as Code如何成为AI秘籍?

白洞计划

AI

KubeBlocks for MSSQL Always On AG 揭秘

小猿姐

云原生 k8s 容器化 mssql

KubeBlocks for ClickHouse 容器化之路

小猿姐

云原生 k8s Clickhouse

当低代码遇上AI,有趣,实在有趣

引迈信息

flywa报错Detected resolved migration not applied to database: 20221103.10000

刘大猫

人工智能 算法 数据分析 智慧城市 智慧家居

谙流 ASK 技术解析(一):秒级扩容

AscentStream

消息队列 消息队列架构

雅菲奥朗SRE知识墙分享(六): 『混沌工程的定义与实践』

雅菲奥朗

运维 SRE 混沌工程

AI提示词增强丨用EARS语法进行产品原子化拆解

阿星AI工作室

AI 产品经理 大模型 提示词 提示词工程

Auto Scaling for Amazon DynamoDB_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章