写点什么

MySQL 索引性能分析概要

  • 2019-12-05
  • 本文字数:2379 字

    阅读完需:约 8 分钟

MySQL 索引性能分析概要

上一篇文章 MySQL 索引设计概要 介绍了影响索引设计的几大因素,包括过滤因子、索引片的宽窄与大小以及匹配列和过滤列。在文章的后半部分介绍了 数据库索引设计与优化 一书中,理想的三星索引的设计流程和套路,到目前为止虽然我们掌握了单表索引的设计方法,但是却没有分析预估索引耗时的能力。



在本文中,我们将介绍书中提到的两种分析索引性能的方法:基本问题法(BQ)和快速估算上限法(QUBE),这两种方法能够帮助我们快速分析、估算索引的性能,及时发现问题。

基本问题法

当我们需要考虑对现有的 SELECT 查询进行分析时,哪怕没有足够的时间,也应该使用基本问题法对查询进行评估,评估的内容非常简单:现有的索引或者即将添加的索引是否包含了 WHERE 中使用的全部列,也就是对于当前查询来说,是否有一个索引是半宽索引。



在上一篇文章中,我们介绍过宽索引和窄索引,窄索引 (username) 其实就叫做半宽索引,其中包含了 WHERE 中的全部的列 username,当前索引的对于该查询只有一颗星,它虽然避免了无效的回表查询造成的随机 IO,但是如果当前的索引的性能仍然无法满足需要,就可以添加 age 将该索引变成宽索引 (username, age) 以此来避免回表访问造成的性能影响;对于上图中的简单查询,索引 (username, age) 其实已经是一个三星索引了,但是对于包含 ORDER BY 或者更加复杂的查询,(username, age) 可能就只是二星索引:



在这时如果该索引仍然不能满足性能的需要,就可以考虑按照上一篇文章 MySQL 索引设计概要 中提供的索引设计方法重新设计了。


虽然基本问题法能够快速解决一些由于索引造成的问题,但是它并不能保证足够的性能,当表中有 (city, username, age) 索引,谓词为 WHERE username="draveness" AND age="21" 时,使用基本问题法并不能得出正确的结果。

快速估算上限法

基本问题法非常简单,它能够最短的时间内帮助我们评估一个查询的性能,但是它并不能准确地反映一个索引相关的性能问题,而快速估算上限法就是一种更加准确、复杂的方法了;其目的在于在程序开发期间就能将访问路径缓慢的问题暴露出来,这个估算方法的输出就是本地响应时间(Local Response Time):



本地响应时间就是查询在数据库服务器中的耗时,不包括任何的网络延迟和多层环境的通信时间,仅包括执行查询任务的耗时。

响应时间

本地响应时间等于服务时间和排队时间的总和,一次查询请求需要在数据库中等待 CPU 以及磁盘的响应,也可能会因为其他事务正在对同样的数据进行读写,导致当前查询需要等待锁的获取,不过组成响应时间中的主要部分还是磁盘的服务时间:



QUBE 在计算的过程中会忽略除了磁盘排队时间的其他排队时间,这样能够简化整个评估流程,而磁盘的服务时间主要还是包括同步读写以及异步读几个部分:



在排除了上述多个部分的内容,我们得到了一个非常简单的估算过程,整个估算时间的输入仅为随机读和顺序读以及数据获取的三个输入,而它们也是影响查询的主要因素:



其中数据获取的过程在比较不同的索引对同一查询的影响是不需要考虑的,因为同一查询使用不同的索引也会得到相同的结果集,获取的数据也是完全相同的。

访问

当 MySQL 读取一个索引行或者一个表行时,就会发生一次访问,当使用全表扫描或者扫描索引片时,读取的第一个行就是随机访问,随机访问需要磁盘进行寻道和旋转,所以其代价巨大,而接下来顺序读取的所有行都是通过顺序访问读取的,代价只有随机访问的千分之一。


如果大量的顺序读取索引行和表行,在原理上可能会造成一些额外的零星的随机访问,不过这对于整个查询的估算来说其实并不重要;在计算本地响应时间时,仍然会把它们当做顺序访问进行估算。

示例

在这里,我们简单地举一个例子来展示如何计算查询在使用某个索引时所需要的本地响应时间,假设我们有一张 users 表,其中有一千万条数据:



在该 users 表中除了主键索引之外,还具有以下 (username, city)、(username, age) 和 (username) 几个辅助索引,当我们使用如下所示的查询时:



两个查询条件分别有着 0.05% 和 12% 的过滤因子,该查询可以直接使用已有的辅助索引 (username, city),接下来我们根据表中的总行数和过滤因子开始估算这一步骤 SQL 的执行时间:



该查询在开始时会命中 (username, city) 索引,扫描符合条件的索引片,该索引总共会访问 10,000,000 * 0.05% * 12% = 600 条数据,其中包括 1 次的随机访问和 599 次的顺序访问,因为该索引中的列并不能满足查询的需要,所以对于每一个索引行都会产生一次表的随机访问,以获取剩余列 age 的信息:



在这个过程中总共产生了 600 次随机访问,最后取回结果集的过程中也会有 600 次 FETCH 操作,从总体上来看这一次 SQL 查询共进行了 601 次随机访问、599 次顺序访问和 600 次 FETCH,根据上一节中的公式我们可以得到这个查询的用时约为 6075.99ms 也就是 6s 左右,这个时间对于绝大多数应用都是无法接受的。



在整个查询的过程中,回表查询的 600 次随机访问成为了这个超级慢的查询的主要贡献,为了解决这个问题,我们只需要添加一个 (username, city, age) 索引或者在已有的 (username, city) 后添加新的 age 列就可以避免 600 次的随机访问:



(username, city, age) 索引对于该查询其实就是一个三星索引了,有关索引设计的内容可以阅读上一篇文章 MySQL 索引设计概要 如果读者有充足的时间依然强烈推荐 数据库索引设计与优化 这本书。

总结

这篇文章是这一年来写的最短的一篇文章了,本来想详细介绍一下 数据库索引设计与优化 书中对于索引性能分析的预估方法,仔细想了一下这部分的内容实在太多,例子也非常丰富,只通过一篇文章很难完整地介绍其中的全部内容,所以只选择了其中的一部分知识点简单介绍,这也是这篇文章叫概要的原因。


如果对文章的内容有疑问,可以在评论中留言。

Reference


本文转载自 Draveness 技术博客。


原文链接:https://draveness.me/sql-index-performance


2019-12-05 18:12911

评论

发布
暂无评论
发现更多内容

《方博碳讨室》:四问欧洲绿色能源转型

Geek_2d6073

LinkedList 源码分析-新增

zarmnosaj

5月月更

对话上市公司数字化转型:激活数据要素 倍增数字价值

BeeWorks

改善CRM系统策略的方法

低代码小观

CRM 客户关系管理 企业管理系统 CRM系统 客户关系管理系统

Squids DBMotion数据库迁移服务上线|助力云端数据畅游无阻!

沃趣科技

fastposter v2.8.1 发布 电商海报生成器

物有本末

Python Pillow fastposter fast-poster

Neo 生态技术月报 | 助力开发者玩转智能合约

TinTinLand

区块链

银行需明确低代码与无代码开发平台差异,以在技术上降低试错成本

易观分析

银行

直播回顾 | 后疫情时代,食品行业破局秘籍get一下!

旺链科技

区块链 溯源 产业区块链

“晕乎乎的概念”:阿里云函数计算的“应用”又是个啥

阿里巴巴云原生

阿里云 Serverless 云原生 函数计算

超潜力公链DFINITY——DeFi 开发者最佳进入时期

TinTinLand

区块链

Hoo网格策略 | 一「网」在手 告别「追涨杀跌」

区块链前沿News

虎符 Hoo 网格交易

Wallys/ AR9531/WiFi Card/ MMCX

wallys-wifi6

AR9531 30dBm high power

深入微服务-服务注册与发现 SpringCloud Eureka之基础

janyxe

微服务 云原生 SpringCloud Eureka 服务注册与发现

时间堆原理详解及C++11的实现

C++后台开发

后端开发 Linux服务器开发 C++11 C++后台开发 时间堆

DeFi挖矿智能合约Dapp系统开发搭建

薇電13242772558

智能合约

AIRIOT物联网低代码平台如何配置欧姆龙omron驱动?

AIRIOT

低代码 物联网 驱动配置

mark:vscode 无法远程访问连接

webrtc developer

vscode

当我们谈论服务质量的时候,我们在谈什么?

VoltDB

5G QoS 电信运营商

性能提升 57% ,SMC-R 透明加速 TCP 实战解析 | 龙蜥技术

OpenAnolis小助手

互联网 网络协议 高性能 TCP/IP 龙蜥技术

【LeetCode】爬楼梯的最少成本Java题解

Albert

算法 LeetCode 5月月更

Liga 讨论: ToB产品可不可以免费?

LigaAI

SaaS

云计算和运维工程师冲突吗?运维岗需要云计算知识吗?

行云管家

云计算 运维 IT运维 云运维

【直播回顾】如何成为一名优秀的OpenHamrony贡献者?

OpenHarmony开发者

OpenHarmony 贡献代码

云数赋能+数字办公 助力政企数字化

墨天轮访谈 | 京东云曲艺伟:京东零售核心业务背后的数据库实践

墨天轮

数据库 京东云 国产数据库

设计模式关系图(全网首发)之结构和创建模式

设计模式

【达人专栏】还不会用Apache Dolphinscheduler吗,大佬用时一个月写出的最全入门教学【二】

白鲸开源

Apache 大数据 开源 workflow dophinscheduler

直播预告丨OpenHarmony标准系统多媒体子系统之视频解读

Anna

OpenHarmony

用更云原生的方式做诊断|大规模 K8s 集群诊断利器深度解析

尔达Erda

程序员 运维 云原生 k8s 工具

设计模式关系图(全网首发)之行为模式

设计模式

MySQL 索引性能分析概要_文化 & 方法_Draveness_InfoQ精选文章