QCon 演讲火热征集中,快来分享技术实践与洞见! 了解详情
写点什么

Apache MXNet 版本添加了对新的 NVIDIA Volta GPU 和 Sparse Tensor 的支持

  • 2019-11-07
  • 本文字数:1789 字

    阅读完需:约 6 分钟

Apache MXNet 版本添加了对新的 NVIDIA Volta GPU 和 Sparse Tensor 的支持

我们对 Apache MXNet 版本 0.12 的发布感到很兴奋。MXNet 社区的参与者密切合作,为用户带来了新的增强功能。在此版本中,MXNet 添加了两项新的重要功能:


  • 对 NVIDIA Volta GPU 的支持,这使用户能够大大减少神经网络模型的训练和推理时间。

  • 对 Sparse Tensor 的支持,这使用户能够以最有利于存储和计算的方式使用稀疏矩阵训练模型。

对 NVIDIA Volta GPU 架构的支持

MXNet v0.12 版本添加了对 NVIDIA Volta V100 GPU 的支持,这使客户训练卷积神经网络的速度比 Pascal GPU 的速度快 3.5 倍。训练神经网络涉及数万亿次的浮点数 (FP) 乘法与加法运算。这些计算通常已使用单精度 (FP32) 完成以实现较高的准确度。但是,最近的研究表明,用户可以通过使用半精度 (FP16) 数据类型的训练获得与使用 FP32 数据类型的训练相同的准确度。


Volta GPU 架构引入了 Tensor Core。每个 Tensor Core 每个时钟周期可执行 64 次乘法和加法混合运算,约为每个 CUDA 核心在每个时钟周期内执行的 FLOPS 的四倍。每个 Tensor Core 执行如下所示的运算:D = A x B + C,其中 A 和 B 是半精度矩阵,而 C 和 D 可以是半精度或单精度矩阵,从而执行混合精度训练。利用新的混合精度训练,用户可以通过对网络的大多数层使用 FP16 并在必要时使用更高精度的数据类型来获得最佳训练绩效,且不会降低精度。



MXNet 使用户能够轻松使用 FP16 训练模型以利用 Volta Tensor Core。例如,您只需在 MXNet 中通过将以下命令选项传递到 train_imagenet.py 脚本即可启用 FP16 训练。


Bash


--dtype float16
复制代码


最近,我们宣布推出一套新的 AWS Deep Learning AMI,它们预安装了针对 Amazon EC2 P3 实例系列中的 NVIDIA Volta V100 GPU 进行了优化的各种深度学习框架,其中包括 MXNet v0.12。只需在 AWS Marketplace 中单击一下鼠标即可开始;或者,您也可以按照此分步指南操作,开始使用您的第一个笔记本

Sparse Tensor 支持

MXNet v0.12 添加了对 Sparse Tensor 的支持,可高效地存储和计算大部分元素为零的张量。我们都很熟悉 Amazon 基于您过去的购买历史记录给出的推荐,并且熟悉 Netflix 基于您过去的查看历史记录和对其他节目的评分给出的节目推荐。这类适用于数百万人的基于深度学习的推荐引擎涉及大部分元素为零的稀疏矩阵的乘法与加法运算。以与在稠密矩阵之间执行矩阵运算相同的方式在稀疏矩阵之间执行的数万亿次矩阵运算在存储和计算方面的效率不高。在默认的稠密结构中存储和操作这类包含许多零元素的稀疏矩阵会导致浪费内存以及对零元素执行不必要的处理。


为了解决这类难点,MXNet 启用了 Sparse Tensor 支持,使 MXNet 用户能够以最有利于存储和计算的方式执行稀疏矩阵运算并更快地训练深度学习模型。MXNet v0.12 支持两大稀疏数据格式:Compressed Sparse Row (CSR) 和 Row Sparse (RSP)。CSR 格式经过优化,可表示包含大量列的矩阵,其中每个行仅包含几个非零元素。RSP 格式经过优化,可表示包含大量行的矩阵,其中大部分行切片都完全是零元素。例如,CSR 格式可用于为推荐引擎编码输入数据的特征向量,而 RSP 格式可用于在训练期间执行稀疏梯度更新。对于大多数常用的运算符 (例如,矩阵点积和元素级运算符),此版本启用对 CPU 的稀疏支持。未来版本中将添加对更多运算符的稀疏支持。


以下代码段说明如何将 scipy CSR 矩阵转换为 MXNet CSR 格式,并使用其中一个向量对其执行稀疏矩阵向量乘法运算。要了解有关在 MXNet 中使用新稀疏运算符的更多信息,请参阅这些教程


Bash


import scipy.sparse as spspimport mxnet as mx# construct a random scipy CSR matrixscipy_csr = spsp.rand(3, 4, format='csr', density=0.5)# convert scipy CSR matrix to MXNet CSR formatmx_csr = mx.nd.sparse.csr_matrix(scipy)# perform sparse matrix-vector multiplicationresult = mx.nd.sparse.dot(mx_csr, mx.nd.ones((4, 1)))
复制代码

后续步骤

MXNet 的入门很简单。可在发行说明中找到此版本的完整更改列表。如果您有疑问或建议,请给我们留言。


作者介绍:



Sukwon Kim 是 AWS Deep Learning 的高级产品经理。他负责开发让客户能够更轻松地使用深度学习引擎的产品,工作重点是开源 Apache MXNet 引擎。在业余时间,他喜欢徒步旅行和旅游。


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/apache-mxnet-release-adds-support-for-new-nvidia-volta-gpus-and-sparse-tensor/


2019-11-07 08:00675

评论

发布
暂无评论
发现更多内容

ptrace注入分析

小道安全

共同推动基础软件根技术发展,华为与中国软件行业协会签署战略合作协议

科技热闻

druid源码阅读(一)整体概览

爱晒太阳的大白

5月月更

『Python』题集⒋

謓泽

Python 5月月更

【架构学习10】——毕业总结

tiger

架构实战营

GaussDB(for Influx)与开源企业版性能对比

华为云开发者联盟

数据库 开源 查询 写入 GaussDB(for Influx)

沙利文发布《2021年中国数据库市场报告》:中国分布式数据库2021专利占全球76%

科技热闻

设计模式之工厂模式

乌龟哥哥

5月月更

【ELT.ZIP】OpenHarmony啃论文俱乐部——大数据框架性能优化系统

ELT.ZIP

大数据 OpenHarmony 压缩算法 ELT.ZIP

趣学设计模式-代理模式

ZuccRoger

5月月更

5 月 20 日,API 网关 Apache APISIX Summit ASIA 2022 重磅来袭

API7.ai 技术团队

开源 API网关 Apache APISIX APISIX 网关 APISIX Summit

Go 语言入门很简单:Go 语言中操作 MySQL 数据库

宇宙之一粟

Go 语言 MySQL 数据库 5月月更

C语言_标准时间与秒单位的转换

DS小龙哥

5月月更

来自2022年的Python 网络爬虫补充知识,HTML+JSON+爬虫场景

梦想橡皮擦

5月月更

kubernetes下的Nginx加Tomcat三部曲之三

程序员欣宸

Java Kubernetes 5月月更

【架构学习09】——电商秒杀系统

tiger

架构实战营

区间合并算法

工程师日月

算法 5月月更

数据湖揭秘—Delta Lake

阿里云大数据AI技术

sql spark 分布式计算 关系型数据库 存储

数据库连接池-Druid 源码学习(一)

wjchenge

初始化 Druid 源码、

Druid连接池源码阅读01

石小天

【LeetCode】乘积小于 K 的子数组Java题解

Albert

LeetCode 5月月更

位运算小妙招-求二进制序列中1的个数

芒果酱

c++ C语言 5月月更

融云 x DSPORT:拿下游戏社交「实时社区」第一滴血

融云 RongCloud

YUV数据分析

Loken

音视频 5月月更

明道云入选爱分析2022年两份低代码研究报告

明道云

面试突击47:死锁产生的原因有哪些?

王磊

Java 面试 java面试

微博评论高性能高可用架构设计

小虾米

RTC 系统音视频传输弱网对抗技术

融云 RongCloud

druid源码学习一

Nick

源码 Druid

网站开发进阶(五十四)jQuery获取父级元素、子级元素、兄弟元素方法汇总

No Silver Bullet

JQuery框架 5月月更

【ELT.ZIP】OpenHarmony啃论文俱乐部——云计算数据压缩方案

ELT.ZIP

云计算 OpenHarmony 数据压缩 ELT.ZIP

Apache MXNet 版本添加了对新的 NVIDIA Volta GPU 和 Sparse Tensor 的支持_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章