写点什么

如何弥合 Spark Datasets 和 DataFrames 之间的性能差距?

  • 2019-08-15
  • 本文字数:2167 字

    阅读完需:约 7 分钟

如何弥合 Spark Datasets 和 DataFrames 之间的性能差距?

ArchSummit深圳2019大会上,蔡東邦 (DB Tsai)讲师做了《如何弥合 Spark Datasets 和 DataFrames 之间的性能差距?》主题演讲,主要内容如下。


演讲简介


Bridging the gap between Spark Datasets and DataFrames


Apple leverages Apache Spark for processing large datasets to power key components of Apple’s production services. The majority of users rely on Spark SQL to benefit from state-of-the-art optimizations in Catalyst and Tungsten. As there are multiple APIs to interact with Spark SQL, users have to make a wise decision which one to pick. While DataFrames and SQL are widely used, they lack type safety so that the analysis errors will not be detected during the compile time such as invalid column names or types. Also, the ability to apply the same functional constructions as on RDDs is missing in DataFrames. Datasets expose a type-safe API and support for user-defined closures at the cost of performance.


译文参考:


Apple 利用 Apache Spark 处理大型数据集,为 Apple 生产服务的关键组件提供动力。 大多数用户依靠 Spark SQL 从 Catalyst 和 Tungsten 中最先进的优化中受益。由于有多个 API 与 Spark SQL 交互,因此用户必须明智地决定最终选择哪一个。虽然 DataFrame 和 SQL 被广泛使用,但它们缺乏类型安全性,因此在编译期间无法检测到分析错误,例如无效的列名称或类型。此外,在 RDDs 上应用相同功能结构的功能却不能在 DataFrames 中使用。Datasets 以牺牲性能为代价公开了类型安全的 API,并支持用户定义的闭包。


This talk will explain cases when Spark SQL cannot optimize typed Datasets as much as it can optimize DataFrames. We will also present an effort to use bytecode analysis to convert user-defined closures into native Catalyst expressions. This helps Spark to avoid the expensive conversion between the internal format and JVM objects as well as to leverage more Catalyst optimizations. A consequence, we can bridge the gap in performance between Datasets and DataFrames, so that users do not have to sacrifice the benefits of Datasets for performance reasons.


本演讲将重点介绍 Spark SQL 无法优化类型化 Datasets 的情况,因为它可以优化 DataFrame。我们还将努力使用字节码分析将用户定义的闭包转换为本机 Catalyst 表达式。这有助于 Spark 避免在内部格式和 JVM 对象之间的昂贵转换,以及利用更多的 Catalyst 优化。因此,我们可以弥合 Datasets 和 DataFrames 之间的性能差距,这样用户就不会因性能原因而牺牲 Datasets 的优势。


Outlines of the speech


  1. Apache Spark

  2. Dataframe vs Dataset

  3. Bytecode Analysis

  4. JVM GC


Key points


  • The audiences will learn how Apache Spark works internally; particularly on how catalyst optimizer optimizes the execution plans.

  • Then I will go through the current problems of Spark’s Dataset implementation which expose a type-safe API and support for user-defined closures at the cost of performance.

  • Finally, I’ll talk about how we do bytecode analysis to understand the JVM bytecode, and then convert them into SQL expressions for further optimization. In some of our Spark jobs, we see 40x performance gain resulting less required resource and faster deliver time.

  • 帮助听众了解 Apache Spark 内部的工作流程,尤其是 Catalyst 优化器如何优化执行计划。

  • 了解 Spark Dataset 当前在应用方面的问题,这些问题公开了类型安全的 API,并以性能为代价支持用户定义的闭包。

  • 最后,我将分享我们是如何实现字节码分析的案例,帮助理解 JVM 字节码,然后将它们转换为 SQL 表达式以进一步优化。在我们所做的一些 Spark 工作中,我们看到了 40 倍的性能提升,从而减少了所需的资源,交付时间也更快。


讲师介绍


蔡東邦 (DB Tsai)


Apple Staff Software Engineer & Apache Spark PMC


DB Tsai is an Apache Spark PMC / Committer and an open source and staff software engineer at Apple Siri. He implemented several algorithms including linear models with Elastici-Net (L1/L2) regularization using LBFGS/OWL-QN optimizers in Apache Spark. Prior to joining Apple, DB worked on Personalized Recommendation ML Algorithms at Netflix. DB was a Ph.D. candidate in Applied Physics at Stanford University. He holds a Master’s degree in Electrical Engineering from Stanford.


译文参考:


蔡東邦老师是 Apache Spark PMC / Committer,同时也是 Apple Siri 的主任工程师。他将多个算法应用到了 Apache Spark 当中,包括使用了 LBFGS / OWL-QN 优化器 的 Elastici-Net(L1 / L2)正则化的线性模型。在加入 Apple Siri 之前,蔡老师在 Netflix 从事个性化推荐机器学习算法的研究工作。目前是斯坦福大学应用物理专业的博士候选人,也获得了斯坦福大学电气工程硕士学位。












完整演讲 PPT 下载链接


https://archsummit.infoq.cn/2019/shenzhen/schedule


2019-08-15 00:005954

评论

发布
暂无评论
发现更多内容

KaiwuDB 参编的《分析型数据库技术要求》标准正式发布

KaiwuDB

数据库 分析型数据库 数据库行业标准制定 数据库标准

Bonree ONE 2024春季正式版:革新智能运维,7 大功能亮点重磅发布

博睿数据

如何在MySQL 中更改数据的前几位数字?

霍格沃兹测试开发学社

Puppeteer实践:复杂的问题简单化

伤感汤姆布利柏

重磅更新:草料二维码容量调整,不再限制图片文件上传量

草料二维码

了解元组:定义、特点、应用及常用方法

测吧(北京)科技有限公司

测试

深入理解计数器函数:闭包与装饰器

测吧(北京)科技有限公司

测试

iPaaS中API自动化测试的作用

谷云科技RestCloud

自动化测试 API ipaas

深入了解条件判断、状态标记和假值状态

测吧(北京)科技有限公司

测试

基于OceanBase+Flink CDC,云粒智慧实时数仓演进之路

Apache Flink

flink oceanbase 实时数据

在线云电脑云桌面如何操作使用

青椒云云电脑

云桌面 云电脑 云电脑云桌面

建发弘爱 X 袋鼠云:加速提升精细化、数字化医疗健康服务能力

袋鼠云数栈

数据资产 医疗 医疗AI 医疗中台 数据服务

元组与列表:相同点、不同点及内存占用

测吧(北京)科技有限公司

测试

掌握Python中的系统监控与管理:使用psutil库

霍格沃兹测试开发学社

深入理解逻辑运算符及其短路特性

测吧(北京)科技有限公司

测试

企业如何训练自己的专属大模型?

幂简集成

AI API 大模型

为什么公共云的弹性能力很难被发挥出来?

AutoMQ

Java 大数据 云原生 AutoMQ

神器!使用Python 轻松识别验证码

霍格沃兹测试开发学社

Python数据可视化神器——pyecharts教程(一)

霍格沃兹测试开发学社

探究字符串操作的各种类别

测吧(北京)科技有限公司

测试

免费云电脑能做什么?

青椒云云电脑

云桌面 云电脑

线程池核心原理浅析

不在线第一只蜗牛

线程 核心原理

关于零信任理念, 零信任的重点是什么

德迅云安全杨德俊

2024春季火山引擎FORCE原动力大会,5月15日开幕

新消费日报

云桌面跟桌面虚拟化有什么区别?如何选择

青椒云云电脑

云桌面 云电脑 云电脑平台

什么是运算符

测吧(北京)科技有限公司

测试

深入理解 FFmpeg:安装和使用指南

霍格沃兹测试开发学社

云桌面的应用场景,如何助力企业轻松上云

青椒云云电脑

云桌面 云电脑 云电脑平台

Pandas read_csv 参数详解

霍格沃兹测试开发学社

解锁工业数据流:NeuronEX 规则调试功能实操指南

EMQ映云科技

emq emqx NeuronEX

如何弥合 Spark Datasets 和 DataFrames 之间的性能差距?_ArchSummit_蔡東邦 (DB Tsai)_InfoQ精选文章