写点什么

理解递归与动态规划

  • 2020-01-15
  • 本文字数:2530 字

    阅读完需:约 8 分钟

理解递归与动态规划

1、从 Fibonacci 函数的四种实现聊起。

Fibonacci 数列,中文也译作斐波那契数列,相信大多数同学不会陌生,就是经典的兔子问题,以下图片内容来源于网络。



很清晰地,如上所述,如果把自然数到 Fibonacci 数列的映射看作一个函数 U(n)的话,那么有 U(n) = U(n-1) + U(n-2)。编码实现的话,自然是首选递归,Fibonacci 数列的递归实现如下:


Fibonacci数列实现方法1-------递归unsigned int Fibonacci_1(unsigned int n) {        if ((n == 1) || (n == 2)) {               return 1;        }          return Fibonacci_1(n - 1) + Fibonacci_1(n - 2); }
复制代码


看上去非常地简洁,非常地清晰,但是,有没有什么问题?有!而且是大问题,算法复杂度太高了,很容易发现算法复杂度为 O(2^n)。展开来看,大概就是这么个情况。



有没有办法可以优化一下呢?很容易发现,采用上述递归实现算法复杂度之所以高的原因就在于做了太多的重复计算。



到这里我们就要质疑一下,多问一句“有这个必要么?!”


当然没有!保存一下运算结果,以空间来换时间不可以么?来,试试看。


Fibonacci 数列实现方法 2-------递归+去重复计算


unsigned int Fibonacci_2(unsigned int n) {        static unsigned int f[100] = {0};               if ((n == 1) || (n == 2)) {               return 1;        }        else if (0 != f[n]) {               return f[n];        }          f[n] = Fibonacci_2(n - 1) + Fibonacci_2(n - 2);        return f[n]; }
复制代码


看上去似乎要好一点了,但是性能如何呢?来来来,是骡子是马拉出来 66,跑起来才知道。定义测试函数。


void testF(void) {        long t1, t2;        unsigned int fn;          t1 = clock();        fn = Fibonacci_1(40);        t2 = clock();          if (t1 <= t2) {               printf("Fibonacci_1 run time =%u, result = %u \n", t2 - t1, fn);        }          t1 = clock();        fn = Fibonacci_2(40);        t2 = clock();          if (t1 <= t2) {               printf("Fibonacci_2 run time =%u, result = %u \n", t2 - t1, fn);        } }
复制代码


实测结果



没有对比就没有伤害。


来,继续思考,是否还可以继续优化?实现方法 2 是以空间换时间,空间复杂度为 O(n),时间复杂度,因对每个 i<n,f(i)都只需要计算 1 次,因此时间复杂度也为 O(n)。目测,时间复杂度基本上已无优化空间,那么空间复杂度呢?静态数组 f 是否必要?



回过头来再看递归关系:U(n) = U(n-1) + U(n-2),也就是说只要依次算出 U(i),1<=i<n,就自然可以得到 U(n),并且计算 U(n)时,只需要知道 U(n-1)和 U(n-2)的值就可以。而对于 U(i),i<n-2 的值都用不到,保存这些东西干啥呢?由此出发,我们推演出代码实现方案 3


Fibonacci 数列实现方法 3-------正向计算


看上去貌似好简单的样子,没有递归,没有对中间结果的保存,so easy!


再对比一下性能来看看:


就是这么漂亮!


BTW:顺便提一句,事实上对于 Fibonacci 数列,是有通项公项可以直接计算的,这是高中奥数的基本功。


根据递推关系得特征根方程è X^2-X-1 = 0


解特征根方程得特征根è x1 = (1+5^(1/2))/2 x2 = (1-5^(1/2))/2


代入通项公式 F(n) = C1*(x1)^n + C2*(x2)^n,F(1)=1,F(2)=1,解得


è C1=1/(5)^(1/2) C2= -1/(5)^(1/2),得通项公式


èF(n) = ,非本文重点介绍内容,故在此不作过多介绍,如有兴趣,可以私聊。


补充编码实现:


Fibonacci 数列实现方法 4------不动点通项公式


unsigned int Fibonacci_4(unsigned int n) {        double sqrt5 = sqrt(5);        double root1 = (1 + sqrt5) / 2;        double root2 = (1 - sqrt5) / 2;               return (pow(root1, n) - pow(root2, n)) / sqrt5; }
复制代码


注: 实现方法 4,涉及开方,幂,以及除法等数学运算,受限于计算机精度限制,在 n 较大时,计算数值不准确,故不推荐。此外,仅为理论说明。

2、动态规划与递归的关系。

回过头来继续再看,Fibonacci 数列实现方法 2 和 Fibonacci 数列实现方法 3 到底有什么差别,本质上来讲,没有差别。这是由 Fibonacci 数列的递推关系式决定的。实现方法 3 之所以空间复杂度低,那仅是由于 Fibonacci 的递推关系实在是太简单了,F(n)仅依赖于 F(n-1)和 F(n-2),如果递推关系再复杂一些,甚至依赖项的个数再与 n 相关,两者就更像了。


但是从实现设计的思想上来看,两者略有不同。


实现方案 3 是正向的来考虑,换种写法,就是标准的动态规划。


但是这种考虑方式略显得反人类。为什么这样说呢?作为技术面试官,我在面试时,喜欢出一些算法方面的问题,来考察应聘者对基本数据结构和算法的理解,对于 Fibonacci 数列,大多数应聘者,包括能力很强的程序员,都是按照递归来写的(问题是很少有考虑性能因素的,都采用的实现方案 1),很少有人会用实现方案 3,不太符合我们的思维模式。


实现方案 2 相对实现方案 3 要更符合我们的思维模式,递归嘛,只要注意到了递归的性能问题,就自然水道渠成了。如刚才提到的实现方案 2 本质上来讲也是动态规划,或者说跟动态规划没有差别,只要有递推关系存在,本质上就是一样的。动态规划相对于递归,仅仅是减少了些不必要的重复计算而已。递归当然也可以做得到。而且更附合我们的思维模式。


所以,总结一下,涉及递推送关系的算法问题,可以用动态规划思维解决的,用递归一样可以解决,关键在于要注意到算法性能,通过矩阵数组保存中间过程运算结果,从而避免不必要的重复计算。一句话,去除了重复计算的递归就是动态规划。

3、实战演练。

题目描述


给定一个正整数,我们可以定义出下面的公式:


N=a[1]+a[2]+a[3]+…+a[m];


a[i]>0,1<=m<=N;


对于一个正整数,求解满足上面公式的所有算式组合,如,对于整数 4 :


4 = 4;


4 = 3 + 1;


4 = 2 + 2;


4 = 2 + 1 + 1;


4 = 1 + 1 + 1 + 1;


所以上面的结果是 5 。


注意:对于 “4 = 3 + 1” 和 “4 = 1 + 3” ,这两处算式实际上是同一个组合!


解答要求时间限制:1000ms, 内存限制:64MB


输入


每个用例中,会有多行输入,每行输入一个正整数,表示要求解的正整数 N(1 ≤ N ≤ 120) 。


输出


对输入中的每个整数求解答案,并输出一行(回车换行);


样例


输入样例 1 复制


4


10


20


输出样例 1


5


42


627


本文转载自华为云开发者社区。


2020-01-15 15:351305

评论

发布
暂无评论
发现更多内容

论文领读|面向机器翻译的多语言预训练技术哪家强?最新进展一睹为快!

澜舟孟子开源社区

人工智能 自然语言处理 机器学习 后端 机器翻译

IMPALA2.12环境安装

怀瑾握瑜的嘉与嘉

7月月更

Linux并不是一个操作系统

冯亮

Linux GNU

openharmony萌新贡献指南

坚果

开源 HarmonyOS OpenHarmony 7月月更

物联网技术在物联网产业格局的分布与应用

AIRIOT

低代码 物联网 低代码,项目开发

连接无限·协同无界|融云首届全球企业通信云大会 WECC 来了

融云 RongCloud

通信云

你的技术leader不懂这个?没有它就是没有设计的完成思考过程

田晓亮

方法论 架构设计

力扣第三题——无重复字符的最长子串

为自己带盐

力扣

Docker 搭建 MySQL 主从复制

宁在春

MySQL Docker 主从复制 7月月更

DeFi 2.0的LaaS协议,重振DeFi赛道发展的关键

BlockChain先知

Baklib:分享一些关于建设企业知识管理(KM)的方法

Baklib

如何将 NFT 元数据从 IPFS 转移到智能合约中

devpoint

智能合约 NFT Metaverse 7月月更

👈🏻👈🏻👈🏻你来追我呀!Flutter 实现追逐动画

岛上码农

flutter ios 移动端开发 安卓开发 7月月更

【刷题记录】15.三数之和

WangNing

7月月更

王者荣耀商城异地多活架构设计

joak

学生思维VS职场思维

KEY.L

React Native 跨端框架与小程序混编的方法

Geek_99967b

小程序

【Docker 那些事儿】容器监控系统,来自Docker的暴击

Albert Edison

Docker 云计算 Kubernetes 云原生 7月月更

文档协同工具推荐

Baklib

深度遍历:统计最高分的节点数目 🐟

空城机

算法题 7月月更

Seata 多语言体系建设

SOFAStack

开源项目 seata 开源软件 多编程语言 项目共建

承上启下继往开来,Python3上下文管理器(ContextManagers)与With关键字的迷思

刘悦的技术博客

Python 数据库 Python3 上下文 上下文管理器

nacos注册中心之服务地址的查询

急需上岸的小谢

7月月更

典型的数据湖应用案例

五分钟学大数据

数据湖 7月月更

几种2022年流行的跨端技术方案的比较

Geek_99967b

小程序

基于 SPICE 协议的硬编推流整合方案在云游戏中的应用

字节跳动视频云技术团队

视频编解码 云游戏

我有 7种 实现web实时消息推送的方案,7种!

程序员小富

Java springboot websocket 消息系统

Paper Time 回顾|MB2:为自治数据库建立行为模型

OceanBase 数据库

如何搭建清晰易懂的数据看板?

字节跳动数据平台

字节跳动 BI BI 分析工具 sentinel dashboard 可视化看板

架构实战营第7模块作业

Geek_53787a

理解递归与动态规划_语言 & 开发_华为云开发者联盟_InfoQ精选文章