一. DC-ASGD 算法介绍
此前,和大家也一起讨论过 DC-ASGD 算法,详细可见:https://zhuanlan.zhihu.com/p/80978479
DC-ASGD 算法主要解决的问题是:异步的随机梯度下降法(ASGD)在深度学习模型的训练中会存在 delayed gradients 的问题,就是当一个 worker 向参数 server 端提交它算出的梯度时,server 端其实已经被其它 worker 更新过好多次了。主要解决方案是利用梯度项的泰勒展开式去近似逼近 loss 函数的 Hessian 矩阵。
具体算法:
二. DC-ASGD 算法 tensorflow 实现
那么如何在 tensorflow 中实现 dc-asgd 算法呢?在上一篇文章中,我们讨论过 tensorflow 中 Optimizer 类的源码解析,其实就是为该篇文章做铺垫。接下来我们就具体分析下 Optimizer 的子类-DelayCompensatedGradientDescentOptimizer 类。
"""DelayCompensatedGradientDescentOptimizer for TensorFlow."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.training import optimizer
from tensorflow.python.training import training_ops
GATE_NONE = 0
GATE_OP = 1
GATE_GRAPH = 2
class DelayCompensatedGradientDescentOptimizer(optimizer.Optimizer):
"""Optimizer that implements the DelayCompensatedGradientDescent algorithm.
See [](https://arxiv.org/abs/1609.08326)
([](https://arxiv.org/pdf/1609.08326.pdf)).
"""
def __init__(self, learning_rate, variance_parameter=2.0, num_workers=1,
use_locking=False, name="DelayCompensatedGradientDescentOptimizer"):
"""Construct a gradient descent optimizer with delay compensation.
It is cricial to note the `num_workers` in constructor and `worker_index` in
`minimize()` and `apply_gradients()`.
Contrast to AdaMaxamOptimizer, the sparse implementation of this algorithm
(used when the gradient is an IndexedSlices object, typically because of
`tf.gather` or an embedding lookup in the forward pass) only updates
variable slices and corresponding `shadow_t` term when that part of
the variable was used in the forward pass. This means that the sparse
behavior is contrast to the dense behavior (similar to some momentum
implementations which ignore momentum unless a variable slice was actually
used).
Args:
learning_rate: A Tensor or a floating point value. The learning rate.
variance_parameter: A Tensor or a floating point value.
The variance control parameter.
num_workers: A int value. The number of workers.
use_locking: If True use locks for update operations.
name: Optional name for the operations created when applying gradients.
Defaults to "DelayCompensatedGradientDescentOptimizer".
"""
num_workers = self._call_if_callable(num_workers)
if num_workers <= 0:
raise ValueError("num_workers must be positive: %s" % num_workers)
super(DelayCompensatedGradientDescentOptimizer, self).__init__(use_locking, name)
self._lr = learning_rate
self._lambda = variance_parameter
self._num_workers = num_workers
self._learning_rate_tensor = None
self._lambda_tensor = None
self._use_locking = use_locking
def _create_slots(self, var_list):
for index in range(self._num_workers):
for v in var_list:
self._zeros_slot(v, "shadow_{0}".format(index), self._name)
def _prepare(self):
lr = self._call_if_callable(self._lr)
lambda_ = self._call_if_callable(self._lambda)
self._learning_rate_tensor = ops.convert_to_tensor(lr, name="learning_rate")
self._lambda_tensor = ops.convert_to_tensor(lambda_, name="lambda")
def _apply_dense(self, grad, var):
shadow = self.get_slot(var, "shadow_{0}".format(self.worker_index))
return training_ops.apply_delay_compensated_gradient_descent(
var,
math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
grad,
math_ops.cast(self._lambda_tensor, grad.dtype.base_dtype),
shadow,
use_locking=self._use_locking).op
def _resource_apply_dense(self, grad, var):
shadow = self.get_slot(var, "shadow_{0}".format(self.worker_index))
return training_ops.resource_apply_delay_compensated_gradient_descent(
var.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
grad,
math_ops.cast(self._lambda_tensor, grad.dtype.base_dtype),
shadow.handle,
use_locking=self._use_locking)
def _apply_sparse_shared(self, grad, var, indices):
shadow = self.get_slot(var, "shadow_{0}".format(self.worker_index))
# if shadow is None:
# raise ValueError("None shadow with index = " + str(self.worker_index) + " and var = " + str(var))
lambda_ = math_ops.cast(self._lambda_tensor, var.dtype.base_dtype)
lr = math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype)
var_slice = array_ops.gather(var, indices)
shadow_slice = array_ops.gather(shadow, indices)
var_scaled_g_values = lr * (grad + lambda_ * grad * grad * (var_slice - shadow_slice))
var_t = state_ops.scatter_add(var, indices, -var_scaled_g_values, use_locking=self._use_locking)
with ops.control_dependencies([var_t]):
shadow_t = state_ops.assign(shadow, var_t)
return control_flow_ops.group(*[var_t, shadow_t])
def _apply_sparse(self, grad, var):
return self._apply_sparse_shared(
grad.values, var, grad.indices)
def _resource_apply_sparse(self, grad, var, indices):
return self._apply_sparse_shared(
grad, var, indices)
def minimize(self, loss, global_step=None, var_list=None,
gate_gradients=GATE_OP, aggregation_method=None,
colocate_gradients_with_ops=False, name=None,
grad_loss=None, worker_index=0):
self.worker_index = worker_index
return super(DelayCompensatedGradientDescentOptimizer, self).minimize(loss=loss, global_step=global_step,
var_list=var_list,
gate_gradients=gate_gradients,
aggregation_method=aggregation_method,
colocate_gradients_with_ops=colocate_gradients_with_ops,
name=name,
grad_loss=grad_loss)
def apply_gradients(self, grads_and_vars, global_step=None, name=None, worker_index=0):
self.worker_index = worker_index
return super(DelayCompensatedGradientDescentOptimizer, self).apply_gradients(grads_and_vars=grads_and_vars,
global_step=global_step, name=name)
_create_slots 函数用来创建一些额外的参数,这里创建的是每一个 worker 上的每一个 variable 所对应的备份变量 shadow。_prepare 函数用来准备优化器的常规超参数。
我们重点关注下_apply_sparse 函数,该函数调用的是_apply_sparse_shared 函数,参数 grad 的数据类型是 IndexedSlices 类型,那么什么是 IndexedSlices 类型呢?这里 Slice 的意思是从 Tensor 里面取特定的一些下标得到原先 tensor 变量的一部分,比如说原来的 tensor 的 shape 是[10,10],取下标[0]得到一个[10]的 Tensor,这个 Tensor 就是原 Tensor 的一个 Slice。那么 IndexedSlices 其实就是一堆 Slices 和它们所对应的下标(也就是 Index)。在梯度更新过程中,如果只需要更新某几行的梯度值,就可以将梯度表示成这种数据结构,来节省计算资源。
所以_apply_sparse_shared 函数参数传入的是 grad.values 和 grad.indices,分别表示特定行的梯度值和行的下标。在计算梯度项时:var_scaled_g_values = lr *(grad + lambda_ * grad * grad *(var_slice - shadow_slice)),也需要先求出特定行的 var_slice 和 shadow_slice。然后根据求出的梯度项更新参数时:var_t = state_ops.scatter_add(var, indices,-var_scaled_g_values, use_locking=self._use_locking),也是在特定的那些行(根据 indices 确定的)做更新。
当这一轮的参数做完更新后,需要将当前时刻的变量 var_t 备份一下,以用于下一时刻的参数更新:shadow_t = state_ops.assign(shadow, var_t)。最后将 var_t, shadow_t 的更新操作放进 control_flow_ops 中。
我们举一个简单的 example 来说明一下这种 IndexedSlices 类型的梯度是怎么更新的:
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.ops import variables
from tensorflow.python.training import adam
if __name__ == '__main__':
value_a = np.ones(shape=[3, 10])
indices_a = np.array([0, 3, 8])
dense_shape_a = [10, 10]
grad_slices_a = ops.IndexedSlices(constant_op.constant(value_a), constant_op.constant(indices_a),
constant_op.constant(dense_shape_a))
var_np = np.ones(shape=[10, 10])
var0 = variables.RefVariable(var_np)
opt = adam.AdamOptimizer()
update = opt.apply_gradients(zip([grad_slices_a], [var0]))
# variables.global_variables_initializer().run()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print("initial variable is:", sess.run(var0))
sess.run(update)
print("update 1 time variable is:", sess.run(var0))
输出:
initial variable is: [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]
update 1 time variable is: [[0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
[0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]
[0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]]
可以很清楚地看到,执行一次梯度更新之后,只有 0,3,8 这三行的变量值发生了改变。这就是使用 IndexedSlices 类型的优势。
另外,training_ops.apply_delay_compensated_gradient_descent 这个函数是在 tensorflow/core/kernels/training_ops.cc 中实现的,核心代码如下:
template <typename T>
struct ApplyDelayCompensatedGradientDescent<CPUDevice, T> {
void operator()(const CPUDevice& d, typename TTypes<T>::Flat var,
typename TTypes<T>::ConstScalar lr,
typename TTypes<T>::ConstFlat grad,
typename TTypes<T>::ConstScalar variance,
typename TTypes<T>::Flat shadow) {
var.device(d) -= lr() * (grad + variance() * grad * grad * (var - shadow));
shadow.device(d) = var;
}
};
其实除了这两个文件之外,还需要写一下注册 ApplyDelayCompensatedGradientDescent 的 OP 接口,这里就不详细讲解了。
三.如何使用 DC-ASGD 算法
在 tensorflow 源码目录中修改或添加完 dc-asgd 算法的几个相关文件后,需要重新编译一下 tensorflow。编译成功后,就可以愉快地使用 dc-asgd 算法的接口啦。
下面给大家举一个使用 DelayCompensatedGradientDescentOptimizer 优化器的分布式训练 demo:
from __future__ import print_function, absolute_import, division
import tensorflow as tf
tf.app.flags.DEFINE_string("ps_hosts", "localhost:2222", "ps hosts")
tf.app.flags.DEFINE_string("worker_hosts", "localhost:2223,localhost:2224", "worker hosts")
tf.app.flags.DEFINE_string("job_name", "worker", "'ps' or'worker'")
tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")
tf.app.flags.DEFINE_integer("num_workers", 2, "Number of workers")
tf.app.flags.DEFINE_boolean("is_sync", False, "using synchronous training or not")
FLAGS = tf.app.flags.FLAGS
def model(images):
"""Define a simple mnist classifier"""
net = tf.layers.dense(images, 500, activation=tf.nn.relu)
net = tf.layers.dense(net, 500, activation=tf.nn.relu)
net = tf.layers.dense(net, 10, activation=None)
return net
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 784).astype('float32')
x_test = x_test.reshape(-1, 784).astype('float32')
x_train /= 255
x_test /= 255
def get_batch(image, label, batch_size=32, training=True):
df = tf.data.Dataset.from_tensor_slices((image, label))
if training:
df = df.repeat(10).shuffle(buffer_size=1000)
df = df.batch(batch_size).prefetch(batch_size)
iterator = df.make_one_shot_iterator()
batch_x, batch_y = iterator.get_next()
return batch_x, batch_y
def main(_):
ps_hosts = FLAGS.ps_hosts.split(",")
worker_hosts = FLAGS.worker_hosts.split(",")
# create the cluster configured by `ps_hosts' and 'worker_hosts'
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
# create a server for local task
server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index)
train_batch_x, train_batch_y = get_batch(x_train, y_train)
test_batch_x, test_batch_y = get_batch(x_test, y_test, training=False)
if FLAGS.job_name == "ps":
server.join() # ps hosts only join
elif FLAGS.job_name == "worker":
# workers perform the operation
# ps_strategy = tf.contrib.training.GreedyLoadBalancingStrategy(FLAGS.num_ps)
# Note: tf.train.replica_device_setter automatically place the paramters (Variables)
# on the ps hosts (default placement strategy: round-robin over all ps hosts, and also
# place multi copies of operations to each worker host
with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=cluster)):
logits = model(train_batch_x)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.one_hot(train_batch_y, 10)))
# The StopAtStepHook handles stopping after running given steps.
hooks = [tf.train.StopAtStepHook(last_step=10000)]
global_step = tf.train.get_or_create_global_step()
#optimizer = tf.train.AdamOptimizer(learning_rate=1e-04)
optimizer = tf.contrib.opt.DelayCompensatedGradientDescentOptimizer(learning_rate=0.001)
if FLAGS.is_sync:
# asynchronous training
# use tf.train.SyncReplicasOptimizer wrap optimizer
# ref: https://www.tensorflow.org/api_docs/python/tf/train/SyncReplicasOptimizer
optimizer = tf.train.SyncReplicasOptimizer(optimizer, replicas_to_aggregate=FLAGS.num_workers,
total_num_replicas=FLAGS.num_workers)
# create the hook which handles initialization and queues
hooks.append(optimizer.make_session_run_hook((FLAGS.task_index == 0)))
train_op = optimizer.minimize(loss, global_step=global_step)
# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
with tf.train.MonitoredTrainingSession(master=server.target,
is_chief=(FLAGS.task_index == 0),
checkpoint_dir="./checkpoint_dir",
hooks=hooks) as mon_sess:
while not mon_sess.should_stop():
# mon_sess.run handles AbortedError in case of preempted PS.
_, ls, step = mon_sess.run([train_op, loss, global_step])
if step % 100 == 0:
print("Train step %d, loss: %f" % (step, ls))
if __name__ == "__main__":
tf.app.run()
启动命令是:
python dc_asgd_exp.py --ps_hosts=localhost:2222 --worker_hosts=localhost:2224 --job_name=ps --task_index=0
python dc_asgd_exp.py --ps_hosts=localhost:2222 --worker_hosts=localhost:2224 --job_name=worker --task_index=0
参考文献:
https://zhuanlan.zhihu.com/p/80978479
https://zhuanlan.zhihu.com/p/87348147
https://www.zhihu.com/question/277403551
https://zhuanlan.zhihu.com/p/35083779
本文转载自 Alex-zhai 知乎账号。
原文链接:https://www.zhihu.com/people/alex-zhai-19/posts
更多内容推荐
solid 设计原则与设计模式 & 单例模式
2022-09-08
企业级别的 tensorflow 分布式训练架构总结
美团点评训练Wide & Deep Learning模型
架构师训练营 week13 作业
pagerank算法
2020-12-20
24|Stable Diffusion:最热门的开源 AI 画图工具
Stable Diffusion:最热门的开源AI画图工具
2023-05-05
实现大规模图计算的算法思路
图神经网络这几年特别火爆,无论学术界还是业界,大家都在考虑用图神经网络。
浅谈 Tensorflow 分布式架构:ring all-reduce 算法
首先还是先回顾下参数同步更新和异步更新的区别
Spark RDD 实战:Action 原理和实战、Spark 广播变量原理和使用
2020-12-03
Tensorflow 中 ring all-reduce 的实现
那如何在Tensorflow代码中实现ring all-reduce呢
【使用 Python 实现算法】01 语言特性
本系列博客是我根据个人使用 Python 工作和刷题的经验总结的一些使用 Python 实现各类算法的一些技巧。
2022-06-27
TensorFlow Ranking 框架在海外推荐业务中的实践与应用
爱奇艺海外推荐业务引入TensorFlow Ranking(TFR)框架,并在此基础上进行了研究和改进,显著提升了推荐效果。本文将分享TFR框架在海外推荐业务中的实践和应用。
LeetCode 刷题 13- 简单 - 罗马数字转整数
算法作为极其重要的一点,是大学生毕业找工作的核心竞争力,所以为了不落后与人,开始刷力扣算法题!
2021-09-01
ASGD
Asynchronous Stochastic Gradient Descent (ASGD)异步的随机梯度下降在深度学习模型的训练中经常被用到
分布式 tensorflow 相关源码阅读笔记 1:参数设备分配
回顾下tensorflow中In-graph和between-graph的概念
urls 调度器
2022-09-08
浅谈 Tensorflow 分布式架构:parameter server 及优化策略
当我们想将一个单机的tensorflow训练程序改写成分布式训练(多机多卡)的时候
25|ControlNet:让你的图拥有一个“骨架”
ControlNet:让你的图拥有一个“骨架”
2023-05-08
tensorflow optimizer 源码阅读笔记
一直对tf中的自动求导机制比较好奇,它内部到底是怎么做梯度的反向传播的呢?
如何使用 MegEngine 生态落地一个算法
MegEngine 生态工具,希望能为用户提供一个快速、高效、灵活的深度学习算法落地平台,以更好地实现算法落地。
2023-03-30
Django 源码分析之 URLconf 的 include
2022-09-08
国庆临近,字节后端开发 3+4 面,终于拿到秋招第一个 offer
算法题:?
2021-11-11
推荐阅读
文心一言 VS 讯飞星火 VS chatgpt (65)-- 算法导论 6.5 4 题
2023-07-24
27|模型工程(三):低成本领域模型方案,小团队怎么做大模型?
2023-10-20
12|实战项目(二):动手训练一个你自己的扩散模型
2023-08-11
算法题每日一练:矩阵置零
2023-05-01
6. gRPC:etcd 服务发现实现
2023-09-27
强化学习从基础到进阶 - 常见问题和面试必知必答 [8]:近端策略优化(proximal policy optimization,PPO)算法
2023-06-28
文心一言 VS 讯飞星火 VS chatgpt (25)-- 算法导论 4.2 7 题
2023-05-29
电子书
大厂实战PPT下载
换一换 吴彪 | 美团 数据科学与平台部/技术专家
张海龙 | Babel CEO
田冬雪 | 腾讯云 资深数据库架构师
评论