写点什么

tensorflow 中 ASGD with Delay Compensation 优化器代码实现

  • 2019-11-29
  • 本文字数:8344 字

    阅读完需:约 27 分钟

tensorflow中ASGD with Delay Compensation优化器代码实现

一. DC-ASGD 算法介绍

此前,和大家也一起讨论过 DC-ASGD 算法,详细可见:https://zhuanlan.zhihu.com/p/80978479


DC-ASGD 算法主要解决的问题是:异步的随机梯度下降法(ASGD)在深度学习模型的训练中会存在 delayed gradients 的问题,就是当一个 worker 向参数 server 端提交它算出的梯度时,server 端其实已经被其它 worker 更新过好多次了。主要解决方案是利用梯度项的泰勒展开式去近似逼近 loss 函数的 Hessian 矩阵。


具体算法:


二. DC-ASGD 算法 tensorflow 实现

那么如何在 tensorflow 中实现 dc-asgd 算法呢?在上一篇文章中,我们讨论过 tensorflow 中 Optimizer 类的源码解析,其实就是为该篇文章做铺垫。接下来我们就具体分析下 Optimizer 的子类-DelayCompensatedGradientDescentOptimizer 类。


"""DelayCompensatedGradientDescentOptimizer for TensorFlow."""from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_function
from tensorflow.python.framework import opsfrom tensorflow.python.ops import array_opsfrom tensorflow.python.ops import control_flow_opsfrom tensorflow.python.ops import math_opsfrom tensorflow.python.ops import state_opsfrom tensorflow.python.training import optimizerfrom tensorflow.python.training import training_ops
GATE_NONE = 0GATE_OP = 1GATE_GRAPH = 2

class DelayCompensatedGradientDescentOptimizer(optimizer.Optimizer): """Optimizer that implements the DelayCompensatedGradientDescent algorithm. See [](https://arxiv.org/abs/1609.08326) ([](https://arxiv.org/pdf/1609.08326.pdf)). """
def __init__(self, learning_rate, variance_parameter=2.0, num_workers=1, use_locking=False, name="DelayCompensatedGradientDescentOptimizer"):
"""Construct a gradient descent optimizer with delay compensation. It is cricial to note the `num_workers` in constructor and `worker_index` in `minimize()` and `apply_gradients()`. Contrast to AdaMaxamOptimizer, the sparse implementation of this algorithm (used when the gradient is an IndexedSlices object, typically because of `tf.gather` or an embedding lookup in the forward pass) only updates variable slices and corresponding `shadow_t` term when that part of the variable was used in the forward pass. This means that the sparse behavior is contrast to the dense behavior (similar to some momentum implementations which ignore momentum unless a variable slice was actually used). Args: learning_rate: A Tensor or a floating point value. The learning rate. variance_parameter: A Tensor or a floating point value. The variance control parameter. num_workers: A int value. The number of workers. use_locking: If True use locks for update operations. name: Optional name for the operations created when applying gradients. Defaults to "DelayCompensatedGradientDescentOptimizer". """ num_workers = self._call_if_callable(num_workers) if num_workers <= 0: raise ValueError("num_workers must be positive: %s" % num_workers) super(DelayCompensatedGradientDescentOptimizer, self).__init__(use_locking, name) self._lr = learning_rate self._lambda = variance_parameter self._num_workers = num_workers self._learning_rate_tensor = None self._lambda_tensor = None self._use_locking = use_locking
def _create_slots(self, var_list): for index in range(self._num_workers): for v in var_list: self._zeros_slot(v, "shadow_{0}".format(index), self._name)
def _prepare(self): lr = self._call_if_callable(self._lr) lambda_ = self._call_if_callable(self._lambda)
self._learning_rate_tensor = ops.convert_to_tensor(lr, name="learning_rate") self._lambda_tensor = ops.convert_to_tensor(lambda_, name="lambda")
def _apply_dense(self, grad, var):
shadow = self.get_slot(var, "shadow_{0}".format(self.worker_index)) return training_ops.apply_delay_compensated_gradient_descent( var, math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype), grad, math_ops.cast(self._lambda_tensor, grad.dtype.base_dtype), shadow, use_locking=self._use_locking).op
def _resource_apply_dense(self, grad, var):
shadow = self.get_slot(var, "shadow_{0}".format(self.worker_index)) return training_ops.resource_apply_delay_compensated_gradient_descent( var.handle, math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype), grad, math_ops.cast(self._lambda_tensor, grad.dtype.base_dtype), shadow.handle, use_locking=self._use_locking)
def _apply_sparse_shared(self, grad, var, indices):
shadow = self.get_slot(var, "shadow_{0}".format(self.worker_index)) # if shadow is None: # raise ValueError("None shadow with index = " + str(self.worker_index) + " and var = " + str(var)) lambda_ = math_ops.cast(self._lambda_tensor, var.dtype.base_dtype) lr = math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype)
var_slice = array_ops.gather(var, indices) shadow_slice = array_ops.gather(shadow, indices)
var_scaled_g_values = lr * (grad + lambda_ * grad * grad * (var_slice - shadow_slice))
var_t = state_ops.scatter_add(var, indices, -var_scaled_g_values, use_locking=self._use_locking)
with ops.control_dependencies([var_t]): shadow_t = state_ops.assign(shadow, var_t)
return control_flow_ops.group(*[var_t, shadow_t])
def _apply_sparse(self, grad, var): return self._apply_sparse_shared( grad.values, var, grad.indices)
def _resource_apply_sparse(self, grad, var, indices): return self._apply_sparse_shared( grad, var, indices)
def minimize(self, loss, global_step=None, var_list=None, gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None, worker_index=0): self.worker_index = worker_index return super(DelayCompensatedGradientDescentOptimizer, self).minimize(loss=loss, global_step=global_step, var_list=var_list, gate_gradients=gate_gradients, aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops, name=name, grad_loss=grad_loss)
def apply_gradients(self, grads_and_vars, global_step=None, name=None, worker_index=0): self.worker_index = worker_index return super(DelayCompensatedGradientDescentOptimizer, self).apply_gradients(grads_and_vars=grads_and_vars,
复制代码


                                                                                 global_step=global_step, name=name)
复制代码


_create_slots 函数用来创建一些额外的参数,这里创建的是每一个 worker 上的每一个 variable 所对应的备份变量 shadow。_prepare 函数用来准备优化器的常规超参数。


我们重点关注下_apply_sparse 函数,该函数调用的是_apply_sparse_shared 函数,参数 grad 的数据类型是 IndexedSlices 类型,那么什么是 IndexedSlices 类型呢?这里 Slice 的意思是从 Tensor 里面取特定的一些下标得到原先 tensor 变量的一部分,比如说原来的 tensor 的 shape 是[10,10],取下标[0]得到一个[10]的 Tensor,这个 Tensor 就是原 Tensor 的一个 Slice。那么 IndexedSlices 其实就是一堆 Slices 和它们所对应的下标(也就是 Index)。在梯度更新过程中,如果只需要更新某几行的梯度值,就可以将梯度表示成这种数据结构,来节省计算资源。


所以_apply_sparse_shared 函数参数传入的是 grad.values 和 grad.indices,分别表示特定行的梯度值和行的下标。在计算梯度项时:var_scaled_g_values = lr *(grad + lambda_ * grad * grad *(var_slice - shadow_slice)),也需要先求出特定行的 var_slice 和 shadow_slice。然后根据求出的梯度项更新参数时:var_t = state_ops.scatter_add(var, indices,-var_scaled_g_values, use_locking=self._use_locking),也是在特定的那些行(根据 indices 确定的)做更新。


当这一轮的参数做完更新后,需要将当前时刻的变量 var_t 备份一下,以用于下一时刻的参数更新:shadow_t = state_ops.assign(shadow, var_t)。最后将 var_t, shadow_t 的更新操作放进 control_flow_ops 中。


我们举一个简单的 example 来说明一下这种 IndexedSlices 类型的梯度是怎么更新的:


import numpy as npimport tensorflow as tffrom tensorflow.python.framework import constant_opfrom tensorflow.python.framework import opsfrom tensorflow.python.ops import variablesfrom tensorflow.python.training import adam

if __name__ == '__main__': value_a = np.ones(shape=[3, 10]) indices_a = np.array([0, 3, 8]) dense_shape_a = [10, 10] grad_slices_a = ops.IndexedSlices(constant_op.constant(value_a), constant_op.constant(indices_a), constant_op.constant(dense_shape_a))
var_np = np.ones(shape=[10, 10])
var0 = variables.RefVariable(var_np) opt = adam.AdamOptimizer() update = opt.apply_gradients(zip([grad_slices_a], [var0])) # variables.global_variables_initializer().run() sess = tf.Session() sess.run(tf.global_variables_initializer()) print("initial variable is:", sess.run(var0)) sess.run(update) print("update 1 time variable is:", sess.run(var0))

输出:initial variable is: [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]update 1 time variable is: [[0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]]
复制代码


可以很清楚地看到,执行一次梯度更新之后,只有 0,3,8 这三行的变量值发生了改变。这就是使用 IndexedSlices 类型的优势。


另外,training_ops.apply_delay_compensated_gradient_descent 这个函数是在 tensorflow/core/kernels/training_ops.cc 中实现的,核心代码如下:


template <typename T>struct ApplyDelayCompensatedGradientDescent<CPUDevice, T> {  void operator()(const CPUDevice& d, typename TTypes<T>::Flat var,                   typename TTypes<T>::ConstScalar lr,                   typename TTypes<T>::ConstFlat grad,                   typename TTypes<T>::ConstScalar variance,                   typename TTypes<T>::Flat shadow) {    var.device(d) -= lr() * (grad + variance() * grad * grad * (var - shadow));    shadow.device(d) = var;  }};
复制代码


其实除了这两个文件之外,还需要写一下注册 ApplyDelayCompensatedGradientDescent 的 OP 接口,这里就不详细讲解了。

三.如何使用 DC-ASGD 算法

在 tensorflow 源码目录中修改或添加完 dc-asgd 算法的几个相关文件后,需要重新编译一下 tensorflow。编译成功后,就可以愉快地使用 dc-asgd 算法的接口啦。


下面给大家举一个使用 DelayCompensatedGradientDescentOptimizer 优化器的分布式训练 demo:


from __future__ import print_function, absolute_import, division
import tensorflow as tf
tf.app.flags.DEFINE_string("ps_hosts", "localhost:2222", "ps hosts")tf.app.flags.DEFINE_string("worker_hosts", "localhost:2223,localhost:2224", "worker hosts")tf.app.flags.DEFINE_string("job_name", "worker", "'ps' or'worker'")tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")tf.app.flags.DEFINE_integer("num_workers", 2, "Number of workers")tf.app.flags.DEFINE_boolean("is_sync", False, "using synchronous training or not")
FLAGS = tf.app.flags.FLAGS

def model(images): """Define a simple mnist classifier""" net = tf.layers.dense(images, 500, activation=tf.nn.relu) net = tf.layers.dense(net, 500, activation=tf.nn.relu) net = tf.layers.dense(net, 10, activation=None) return net

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()x_train = x_train.reshape(-1, 784).astype('float32')x_test = x_test.reshape(-1, 784).astype('float32')x_train /= 255x_test /= 255

def get_batch(image, label, batch_size=32, training=True): df = tf.data.Dataset.from_tensor_slices((image, label)) if training: df = df.repeat(10).shuffle(buffer_size=1000) df = df.batch(batch_size).prefetch(batch_size) iterator = df.make_one_shot_iterator() batch_x, batch_y = iterator.get_next() return batch_x, batch_y

def main(_): ps_hosts = FLAGS.ps_hosts.split(",") worker_hosts = FLAGS.worker_hosts.split(",")
# create the cluster configured by `ps_hosts' and 'worker_hosts' cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
# create a server for local task server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index)
train_batch_x, train_batch_y = get_batch(x_train, y_train) test_batch_x, test_batch_y = get_batch(x_test, y_test, training=False)
if FLAGS.job_name == "ps": server.join() # ps hosts only join elif FLAGS.job_name == "worker": # workers perform the operation # ps_strategy = tf.contrib.training.GreedyLoadBalancingStrategy(FLAGS.num_ps)
# Note: tf.train.replica_device_setter automatically place the paramters (Variables) # on the ps hosts (default placement strategy: round-robin over all ps hosts, and also # place multi copies of operations to each worker host with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % FLAGS.task_index, cluster=cluster)):
logits = model(train_batch_x) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.one_hot(train_batch_y, 10)))
# The StopAtStepHook handles stopping after running given steps. hooks = [tf.train.StopAtStepHook(last_step=10000)]
global_step = tf.train.get_or_create_global_step() #optimizer = tf.train.AdamOptimizer(learning_rate=1e-04) optimizer = tf.contrib.opt.DelayCompensatedGradientDescentOptimizer(learning_rate=0.001)
if FLAGS.is_sync: # asynchronous training # use tf.train.SyncReplicasOptimizer wrap optimizer # ref: https://www.tensorflow.org/api_docs/python/tf/train/SyncReplicasOptimizer optimizer = tf.train.SyncReplicasOptimizer(optimizer, replicas_to_aggregate=FLAGS.num_workers, total_num_replicas=FLAGS.num_workers) # create the hook which handles initialization and queues hooks.append(optimizer.make_session_run_hook((FLAGS.task_index == 0)))
train_op = optimizer.minimize(loss, global_step=global_step)
# The MonitoredTrainingSession takes care of session initialization, # restoring from a checkpoint, saving to a checkpoint, and closing when done # or an error occurs. with tf.train.MonitoredTrainingSession(master=server.target, is_chief=(FLAGS.task_index == 0), checkpoint_dir="./checkpoint_dir", hooks=hooks) as mon_sess: while not mon_sess.should_stop(): # mon_sess.run handles AbortedError in case of preempted PS. _, ls, step = mon_sess.run([train_op, loss, global_step]) if step % 100 == 0: print("Train step %d, loss: %f" % (step, ls))

if __name__ == "__main__": tf.app.run()
复制代码


启动命令是:


python dc_asgd_exp.py --ps_hosts=localhost:2222 --worker_hosts=localhost:2224 --job_name=ps --task_index=0python dc_asgd_exp.py --ps_hosts=localhost:2222 --worker_hosts=localhost:2224 --job_name=worker --task_index=0
复制代码


参考文献:


https://zhuanlan.zhihu.com/p/80978479


https://zhuanlan.zhihu.com/p/87348147


https://www.zhihu.com/question/277403551


https://zhuanlan.zhihu.com/p/35083779


本文转载自 Alex-zhai 知乎账号。


原文链接:https://www.zhihu.com/people/alex-zhai-19/posts


2019-11-29 08:00823

评论

发布
暂无评论
发现更多内容

怎么查询游戏服务器IP?哪些工具可以协助?

一只扑棱蛾子

服务器

win版PilotEdit Lite(高级文本编辑器)激活版

iMac小白

PilotEdit下载 PilotEdit激活版 PilotEdit破解版

海外云手机——电商最有效的引流工具

Ogcloud

云手机 海外云手机 云手机海外版 电商云手机 跨境云手机

信创腾飞,必须使用国产芯片系统!

Geek_2305a8

Win版Adobe After Effects 2024(Ae2024)直装破解版

iMac小白

After Effects 2024下载 After Effects 2024破解 After Effects 2024直装 AE2024下载

win版Topaz Photo AI(图片降噪软件) v3.0.3特别版下载

iMac小白

Topaz Photo AI下载 Topaz Photo AI破解 Topaz Photo AI特别版

电商后台的秘密:通过API接口提取商品信息

Noah

产品经理必备的API技术知识

幂简集成

产品经理 API

怪兽AI数字人直播软件

Mr_song

AI 短视频 直播 数字人

10分钟了解Flink SQL使用

不在线第一只蜗牛

sql 大数据 flink

盘点信创产业发展与开发者相关的技术

Geek_2305a8

外贸网站优化为什么要布置内部链接?如何优化内链?

九凌网络

win版iZotope Ozone Advanced (音频制作软件)v11.0.1 直装版

iMac小白

OSS_PIPE:Rust编写的大规模文件迁移工具

京东科技开发者

Win版Adobe Audition 2024 (Au2024)最新直装版下载

iMac小白

Audition 2024 Audition 2024下载 Audition 2024直装版 Audition 2024破解版

面试题:Spring Bean线程安全?别担心,只要你不写并发代码就好了!

快乐非自愿限量之名

Java spring 安全

Java Chassis 3:接口维度负载均衡

华为云开发者联盟

Java 华为云 华为云开发者联盟 企业号2024年5月PK榜

win版eM Client Pro(邮件处理软件)v9.2.2258 激活版

iMac小白

eM Client Pro下载 eM Client Pro激活版 eM Client Pro破解版

在数字化时代保持企业财务管理的持续技术创新

智达方通

如何优雅的使用ollama| 京东云技术团队

京东科技开发者

IDC 权威认可!Aloudata 入选金融领域中数据管理分析服务最佳实践案例

Aloudata

数据分析 自动化 IDC 全链路数据血缘 金融数据

面试题:线程池内“闹情绪”的线程,怎么办?

EquatorCoco

Python 开发语言 window

进一步解读英伟达 Blackwell 架构、NVlink及GB200 超级芯片

GPU算力

深度学习 英伟达 Blackwell GB200

个人品牌升级攻略:ChatGPT助您塑造独特简历风格

测吧(北京)科技有限公司

测试

英特尔人工智能创新应用大赛最终奖项揭晓!酷睿Ultra助力选手创意开发

E科讯

聚焦OLAP性能提升,火山引擎ByteHouse性能挑战赛圆满落幕

字节跳动数据平台

什么? 20分钟,构建你自己的LLaMA3应用程序| 京东云技术团队

京东科技开发者

一键自动化博客发布工具,用过的人都说好(csdn篇)

程序那些事

工具 程序那些事 自动发布

深入解析Apache Flink核心概念:事件流、状态、事件时间和快照

木南曌

实时计算

tensorflow中ASGD with Delay Compensation优化器代码实现_语言 & 开发_Alex-zhai_InfoQ精选文章