QCon 演讲火热征集中,快来分享技术实践与洞见! 了解详情
写点什么

使用 Amazon Textract 和 Amazon Comprehend Medical 实现无服务器化的医疗文档分析(一)

  • 2020-01-09
  • 本文字数:5875 字

    阅读完需:约 19 分钟

使用 Amazon Textract 和 Amazon Comprehend Medical 实现无服务器化的医疗文档分析(一)

场景概述

  • 在医学报告整理和内容提取的场景中,从业人员往往需要花费大量的时间进行内容阅读和关键字的提炼;Amazon Textract 结合 Amazon Comprehend Medical 的解决方案整体采用无服务器化架构,全自动化也提高整体效率。采用该解决方案,可以以秒级的效率提取出需要的内容;除此之外,该架构也大大降低了整体成本,架构中包含的所有服务都以实际使用计费。

  • Amazon Textract 是一个托管的 OCR(Optical Character Recognition) 服务,Amazon Comprehend Medical 是一个医疗语义分析的托管人工智能服务。通过 Amazon Textract 将医学报告和诊断报告的表单表格转化成序列化文档,通过 Amazon Comprehend Medical 对这些序列化文档进行分析并快速获取不同分类的信息。在 CRO(Clinical Research Organization) 等行业场景中,可以通过这个解决方案对医学研究、药物分析及诊断报告提供有效的帮助和补充。

服务架构

  • 在这个架构中,我们需要创建:

  • 一个 Amazon S3 存储桶用来存放输入的文档资料和输出的结果文件

  • 一个用来调用 Amazon Textract API 的 AWS Lambda 函数

  • 一个用来调用 Amazon Comprehend Medical API 的 AWS Lambda 函数



架构逻辑如下:


  1. 以用户向 Amazon S3 传入一个文档为例,上传成功后 AWS Lambda 函数会以该事件作为触发并调用 Amazon Textract API,将该文档内容提取成序列化的文档以及待分析的文本,并存入 Amazon S3 的相应路径

  2. 上述待分析文本传入 Amazon S3 后,又会触发下一个 AWS Lambda 函数,调用 Amazon Comprehend Medical API,对内容进行语义分析,并将分析后的结果写入 Amazon S3

  3. 完成以上自动化的操作后,用户即可查询读取提炼后的内容进行进一步的工作

具体实现

Amazon S3 存储桶配置

  • 创建用于输入和输出医学分析报告的存储桶和桶下面相应目录,例如:

  • 存储桶:s3://medical-report-analysis-<unique_identifier>

  • 这里的<unique_identifier> 用以和其他用户的 S3 存储桶区分,因为 Amazon S3 存储桶的名称具有全球唯一性

  • 文档输入目录:s3://medical-report-analysis-<unique_identifier>/input

  • 手动检查目录:s3://medical-report-analysis-<unique_identifier>/manual

  • 分析输入目录:s3://medical-report-analysis-<unique_identifier>/medical

  • 保护数据目录:s3://medical-report-analysis-<unique_identifier>/phi

  • 原始文档目录:s3://medical-report-analysis-<unique_identifier>/raw

  • 分析结果目录:s3://medical-report-analysis-<unique_identifier>/result



  • 启用 Amazon S3 的版本控制

AWS IAM 权限配置

由于整体技术实现会通过 AWS Lambda 作为粘合剂将几个服务串联起来,所以需要创建相应的 AWS IAM 角色以确保服务之间有权限进行相互调用;以下会创建用于串接 Amazon S3 和 Amazon Textract 的 AWS IAM Role,以及用于串接 Amazon S3 和 Amazon Comprehend Medical 的 AWS IAM Role:


  1. 创建用于串接 Amazon S3 和 Amazon Textract 的 AWS IAM Policy:

  2. 策略名称:LAMBDA_TEXTRACT_S3_RW

  3. 策略文档:


Python


{  "Version": "2012-10-17",  "Statement": [    {      "Effect": "Allow",      "Action": [        "textract:*",        "s3:*",        "cloudwatch:*",        "logs:*",        "iam:GetPolicy",        "iam:GetPolicyVersion",        "iam:GetRole"      ],      "Resource": "*"    },    {      "Effect": "Allow",      "Action": "iam:CreateServiceLinkedRole",      "Resource": "arn:aws:iam::*:role/aws-service-role/events.amazonaws.com/AWSServiceRoleForCloudWatchEvents*",      "Condition": {        "StringLike": {          "iam:AWSServiceName": "events.amazonaws.com"        }      }    }  ]}
复制代码


  1. 创建用于串接 Amazon S3 和 Amazon Textract 的 AWS IAM Role:

  2. 受信任实体:Lambda

  3. 绑定策略:LAMBDA_TEXTRACT_S3_RW

  4. 角色名称:LAMBDA_TEXTRACT_S3_RW_ALL

  5. 创建用于串接 Amazon S3 和 Amazon Comprehend Medical 的 AWS IAM Policy:

  6. 策略名称:LAMBDA_COMPREHENDMEDICAL_S3_RW

  7. 策略文档:


Python


{  "Version": "2012-10-17",  "Statement": [    {      "Effect": "Allow",      "Action": [        "comprehendmedical:*",        "s3:*",        "cloudwatch:*",        "logs:*",        "iam:GetPolicy",        "iam:GetPolicyVersion",        "iam:GetRole"      ],      "Resource": "*"    },    {      "Effect": "Allow",      "Action": "iam:CreateServiceLinkedRole",      "Resource": "arn:aws:iam::*:role/aws-service-role/events.amazonaws.com/AWSServiceRoleForCloudWatchEvents*",      "Condition": {        "StringLike": {          "iam:AWSServiceName": "events.amazonaws.com"        }      }    }  ]}
复制代码


  1. 创建用于串接 Amazon S3 和 Amazon Textract 的 AWS IAM Role:

  2. 受信任实体:Lambda

  3. 绑定策略:LAMBDA_COMPREHENDMEDICAL_S3_RW

  4. 角色名称:LAMBDA_COMPREHENDMEDICAL_S3_RW_ALL

AWS Lambda 函数 – textract_content_ingest

  1. 函数名称:textract_content_ingest

  2. 运行时:Python 3.8

  3. 执行角色:LAMBDA_TEXTRACT_S3_RW_ALL

  4. 内存分配:1024 MB

  5. 超时:1 分钟

  6. 代码如下:


Python


import boto3import json
def lambda_handler(event, context): # File definition s3Key = event['Records'][0]['s3']['object']['key'] keyName = s3Key.split('/')[1].split('.')[0] outFile = '/tmp/output.json' outputKey = 'raw/' + keyName + '/raw.json' medicalRaw = "/tmp/medicalraw.txt" medicalRawKey = 'raw/' + keyName + '/medicalraw.txt' medicalReport = '/tmp/medicalreport.txt' medicalReportKey = 'medical/' + keyName + '/medicalreport.txt'
# S3 and Textract Configuration s3Bucket = event['Records'][0]['s3']['bucket']['name'] fileType = 'FORMS'
# Call Textract to convert form to json textract = boto3.client('textract') textractResponse = textract.analyze_document( Document={ 'S3Object': { 'Bucket': s3Bucket, 'Name': s3Key } }, FeatureTypes=[ fileType ] ) with open(outFile, 'w') as outfile: outfile.write(json.dumps(textractResponse, indent=4))
# Ingest content for blocks in textractResponse['Blocks'][1:]: if blocks['Confidence']: if (blocks['Confidence'] >= 70) and (blocks['BlockType'] == 'LINE'): with open(medicalReport, 'a') as medicalReportOut: medicalReportOut.write(blocks['Text'] + "\r\n") elif (blocks['Confidence'] >= 70) and (blocks['BlockType'] == 'WORD'): with open(medicalRaw, 'a') as medicalRawOut: medicalRawOut.write(blocks['Text'] + "\r\n") else: continue else: print("oops")
# Upload outputs to s3 s3 = boto3.resource('s3') try: s3.meta.client.upload_file(outFile, s3Bucket, outputKey) s3.meta.client.upload_file(medicalReport, s3Bucket, medicalReportKey) s3.meta.client.upload_file(medicalRaw, s3Bucket, medicalRawKey) except Exception as e: print(e) print("Upload failed!") else: print("Upload done!")
复制代码

AWS Lambda 函数 – comprehendmedical_analysis

  1. 函数名称:comprehendmedical_analysis

  2. 运行时:Python 3.8

  3. 执行角色:LAMBDA_COMPREHENDMEDICAL_S3_RW_ALL

  4. 内存分配:1024 MB

  5. 超时:1 分钟

  6. 代码如下:


Python


import boto3import json
def lambda_handler(event, context): # Configure definition s3Bucket = event['Records'][0]['s3']['bucket']['name'] s3Key = event['Records'][0]['s3']['object']['key'] keyName = s3Key.split('/')[1].split('.')[0] localFinal = '/tmp/result.txt' phiFinal = '/tmp/phi.txt' manualFinal = '/tmp/manual.txt' medicalResult = 'result/' + keyName + '/medicalresult.txt' phiResult = 'phi/' + keyName + '/phi.txt' manualResult = 'manual/' + keyName + '/manual.txt'
# Ingest medical report try: s3 = boto3.client('s3') except Exception as e: print(e) print('connect S3 failed!') else: print('connect S3 successfully')
s3_object = s3.get_object(Bucket=s3Bucket, Key=s3Key) body = s3_object['Body']
# Execute medical analysis try: comprehendMedical = boto3.client('comprehendmedical') except Exception as e: print(e) else: print('connect Comprehend Medical successfully')
detectEntities = comprehendMedical.detect_entities_v2( Text=body.read().decode('utf-8') ) detectOutputRaw = detectEntities['Entities']
# Categorize different types of information report_ANATOMY = [] report_MEDICAL_CONDITION = [] report_MEDICATION = [] report_PROTECTED_HEALTH_INFORMATION = [] report_TEST_TREATMENT_PROCEDURE = [] report_MANUAL = []
for ctgy in detectOutputRaw: if ctgy['Score'] >= 0.6: if ctgy['Category'] == 'ANATOMY': report_ANATOMY.append(ctgy) elif ctgy['Category'] == 'MEDICAL_CONDITION': report_MEDICAL_CONDITION.append(ctgy) elif ctgy['Category'] == 'MEDICATION': report_MEDICATION.append(ctgy) elif ctgy['Category'] == 'PROTECTED_HEALTH_INFORMATION': report_PROTECTED_HEALTH_INFORMATION.append(ctgy) elif ctgy['Category'] == 'TEST_TREATMENT_PROCEDURE': report_TEST_TREATMENT_PROCEDURE.append(ctgy) else: continue else: report_MANUAL.append(ctgy)
result_ANATOMY = [] result_MEDICAL_CONDITION = [] result_MEDICATION = [] result_PROTECTED_HEALTH_INFORMATION = [] result_TEST_TREATMENT_PROCEDURE = [] result_MANUAL = []
if report_ANATOMY: for anatomy in report_ANATOMY: result_ANATOMY.append(anatomy['Text']) if report_MEDICAL_CONDITION: for medical_condition in report_ANATOMY: result_MEDICAL_CONDITION.append(medical_condition['Text']) if report_MEDICATION: for medication in report_MEDICATION: result_MEDICATION.append(medication['Text']) if report_PROTECTED_HEALTH_INFORMATION: for protected_health_information in report_PROTECTED_HEALTH_INFORMATION: result_PROTECTED_HEALTH_INFORMATION.append(protected_health_information['Text']) if report_TEST_TREATMENT_PROCEDURE: for test_treatment_procedure in report_TEST_TREATMENT_PROCEDURE: result_TEST_TREATMENT_PROCEDURE.append(test_treatment_procedure['Text']) if report_MANUAL: for test_manual in report_MANUAL: result_MANUAL.append(test_manual['Text'])
with open(localFinal, 'a') as localfile: if result_ANATOMY: localfile.write('Anatomy:\r\n' + '\r\n'.join(set(result_ANATOMY))) if result_MEDICAL_CONDITION: localfile.write('\r\n---\r\n') localfile.write('Medical Condition:\r\n' + '\r\n'.join(set(result_MEDICAL_CONDITION))) if result_MEDICATION: localfile.write('\r\n---\r\n') localfile.write('Medication:\r\n' + '\r\n'.join(set(result_MEDICATION))) if result_TEST_TREATMENT_PROCEDURE: localfile.write('\r\n---\r\n') localfile.write('Test Treatment Procedure:\r\n' + '\r\n'.join(set(result_TEST_TREATMENT_PROCEDURE))) localfile.close()
with open(phiFinal, 'a') as phifile: if result_PROTECTED_HEALTH_INFORMATION: phifile.write('Protected Health Information:\r\n' + '\r\n'.join(set(result_PROTECTED_HEALTH_INFORMATION))) phifile.close()
with open(manualFinal, 'a') as manualfile: if result_MANUAL: manualfile.write('Manually Check:\r\n' + '\r\n'.join(set(result_MANUAL))) manualfile.close()
# Upload outputs to s3 s3Upload = boto3.resource('s3') try: s3Upload.meta.client.upload_file(localFinal, s3Bucket, medicalResult) s3Upload.meta.client.upload_file(phiFinal, s3Bucket, phiResult) s3Upload.meta.client.upload_file(manualFinal, s3Bucket, manualResult)
except Exception as e: print(e) print("Upload failed!") else: print("Upload done!")
复制代码

Amazon S3 事件与 AWS Lambda 集成

  1. 使用拥有 Amazon S3 管理权限的用户登录 AWS 管理控制台

  2. 进入到相应的 Amazon S3 存储桶 (medical-report-analysis-<unique_identifier>)

  3. 切换到“属性”选项卡,点开“事件”

  4. 点击“添加通知”,输入名称“upload_report”,事件勾选 “PUT”,前缀处输入 “input/”,发送到选择 AWS Lambda,选择函数 textract_content_ingest,然后选择保存

  5. 点击“添加通知”,输入名称“comprehendmedical_analysis”,事件勾选 “PUT”,前缀处输入 “medical/”,发送到选择 AWS Lambda,选择函数 comprehendmedical_analysis,然后选择保存


本文转载自 AWS 技术博客。


原文链接:https://amazonaws-china.com/cn/blogs/china/serverless-medical-document-analysis-with-amazon-textract-and-amazon-comprehend-medical/


2020-01-09 15:57769

评论

发布
暂无评论
发现更多内容

vue为什么v-for的优先级比v-if的高?

bb_xiaxia1998

Vue

掌握这些前端手写面试题能进大厂吗

helloworld1024fd

JavaScript

【专项测试系列】-缓存击穿、穿透、雪崩专项测试

京东科技开发者

缓存 测试 缓存穿透 缓存击穿 缓存雪崩

注意 ! !|95% 的应用程序中发现错误配置和漏洞

SEAL安全

配置管理 软件供应链安全 漏洞管理

React源码分析6-hooks源码

goClient1992

React

React-hooks面试考察知识点汇总

beifeng1996

React

GitHub上新被爆赞!高并发JUC源码分析笔记,竟深受程序员追捧

钟奕礼

Java java程序员 java编程 Java面试题

react面试题详解

beifeng1996

React

面试官:请实现Javascript发布-订阅模式

helloworld1024fd

JavaScript

云安全系列3:如何构建云安全策略

HummerCloud

云计算 数据安全 云安全 11月月更

浅谈深度学习中的概率

华为云开发者联盟

人工智能 华为云

「Go易错集锦」如何正确设置枚举中的零值

Go学堂

golang 程序员 个人成长 枚举 11月月更

Kata3.0.0 x LifseaOS x 龙蜥内核三管齐下!带你体验最新的安全容器之旅

OpenAnolis小助手

容器 云原生 内核 龙蜥社区 袋鼠RunD

腾讯二面vue面试题总结

bb_xiaxia1998

Vue

vue组件通信6种方式总结(常问知识点)

bb_xiaxia1998

Vue

DDD与应用架构

胖子笑西风

架构 DDD 框架 整洁架构 Java core

SpringBoot 接口层统一加密解密

小小怪下士

Java 程序员 springboot

PGL图学习之图神经网络GNN模型GCN、GAT[系列六]

汀丶人工智能

图神经网络 11月月更

谈谈前端应用里图标(Icon)的渲染和内容提取方式

汪子熙

前端开发 SAP ui5 Web应用 11月月更

全国独家 | 上海线下面授大规模敏捷LeSS认证 | 2022年12月8-10日

ShineScrum

less 大规模敏捷 LeSS认证 吕毅老师

React源码分析7-state计算流程和优先级

goClient1992

React

前端一面经典react面试题(边面边更)

beifeng1996

React

React-Hooks怎样封装防抖和节流-面试真题

beifeng1996

记一场vue面试

bb_xiaxia1998

Vue

React源码分析5-commit

goClient1992

React

高频js手写题之实现数组扁平化、深拷贝、总线模式

helloworld1024fd

JavaScript

阿里Redis最全面试全攻略,读完这个就可以和阿里面试官好好聊聊

钟奕礼

Java java程序员 java面试 java编程

年搜索量超7亿次背后:这款APP用火山引擎 DataTester 完成“数据驱动”

字节跳动数据平台

大数据 数据分析 A/B测试

阿里云架构师张先国:揭秘ECS倚天实例背后的技术

云布道师

算力 云栖大会 倚天实例

前端面试被问到的js手写面试题汇总

helloworld1024fd

JavaScript

Fiori Elements 应用进行二次开发的一个具体案例分享

汪子熙

SAP Fiori ui5 Web应用 11月月更

使用 Amazon Textract 和 Amazon Comprehend Medical 实现无服务器化的医疗文档分析(一)_行业深度_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章