写点什么

MXNet 视频 I/O 读取速度提升 18 倍的优化策略

  • 2020-02-24
  • 本文字数:2116 字

    阅读完需:约 7 分钟

MXNet 视频I/O读取速度提升18倍的优化策略

大规模视频数据的模型训练中,视频读取时间严重影响模型的训练速度。MXNet 仅提供读取图像的迭代器,没有提供读取视频的迭代器,本文提出一种优化策略,可以将训练速度提升 18 倍。

一、前言

大规模视频数据的模型训练中,视频读取时间严重影响模型的训练速度。MXNet 仅提供读取图像的迭代器,没有提供读取视频的迭代器。传统方法基于 opencv 或 skimage 直接读取原始图像,速度较慢。我们将原始图像打包成 Rec 格式,然后使用 ImageRecordIter 迭代器构建新的迭代器,具体代码实现见 MTCloudVision/mxnet-videoio(https://github.com/MTCloudVision/mxnet-videoio)。使用4个Titan 1080ti GPU,优化后训练速度提升了~18 倍。


MXNet 框架使用迭代器器模式实现读取硬盘中图像的 I/O 接口。目前 MXNet 官方提供的读取图像的迭代器有:image.ImageIter、io.ImageRecordIter(io.ImageRecordUInt8Iter)、io.MNISTIter。MXNet 的 I/O 接口可扩展性强,支持开发者对于图像进行打包,生成用于训练模型的迭代器。目前 MXNet 没有提供读取视频的 I/O 接口。


本文首先比较 MXNet 不同接口的图像 I/O 性能;然后在 Rec 图像迭代器基础上,实现视频 I/O 迭代器,同时对比了优化前后的性能指标。

二、图像 I/O 接口性能对比

MXNet 三种图像 I/O 迭代器:


  • io.MNISTIter:该接口是为 MNIST 数据集设计的,仅支持读取 MNIST 图像数据,数据增强格式支持有限;

  • io.ImageRecordIter:支持 Rec 格式的数据读取。该接口同时支持多种图像增强方式。基于 C++实现,执行效率较高,读取速度较快。缺点是需要将所有训练图像一次性打包成 Rec 格式,占用磁盘空间较大;

  • image.ImageIter:同时支持读取 Rec 和原始图像,相比以上两接口,更加灵活,同时也支持多种图像增强方式。接口基于 Python 实现,读取速度慢于 io.ImageRecordIter 接口;


我们对 image.ImageIter 和 io.ImageRecordIter 做了如下对比测试:


测试环境:


MXNet 版本:0.11.0


网络结构:Inception-v3


类别(num-classes):3


GPU:titan x


测试结果:


单 GPU,batchsize=128



可以看出,前两种读取方式的 I\O 时间主要消耗在 data_iter 阶段,第三种 I\O 时间主要消耗在 update_metric 阶段,且前两种时间消耗大约是第三种的 1.4 倍。调试 ImageRecordIter 接口的 update_metric 阶段操作,发现耗时主要集中在 pred_label.asnumpy()或 pred.asnumpy()操作。


多 GPU(3),batchsize=128*3



可以看出,多 GPU 时,前两种 io 时间约为第三种的 4.4 倍。


结论:单 GPU 时,ImageRecordIter(Rec 格式)的读取速度是其他接口的 1.4 倍;多 GPU 时,ImageRecordIter(Rec 格式)是其他接口的 4.4 倍。原因是其他接口 I/O 读取数据时间是训练时间的 30 倍+,多 GPU 时,其他接口速度基本不变。如果数据集是固定的,建议使用 ImageRecordIter 接口进行图像读取,缺点是占用磁盘空间较大。

三、视频 I/O 优化性能分析

本部分介绍基于 mxnet 图像 io 迭代器 ImageRecordIter 的视频读取迭代器的实现方法,具体实现可以参考:MTCloudVision/mxnet-videoio(https://github.com/MTCloudVision/mxnet-videoio)。


mxnet 图像 I/O 迭代器的输出结构:(batchsize, channel, height, width)。


我们要实现的读取视频的迭代器输出结构:(batchsize, frame_pervideo, channel, height, width),有两种方式可以实现这种迭代器,即基于 opencv 接口实现迭代器和对已有迭代器接口进行封装。


  • 基于 OpenCV 接口实现迭代器:使用 OpenCV 读取视频,将读取数据进行打包成结构为(batchsize,frame_pervideo, channel, height, width)的数据。该方法优点:基于 Python 代码容易实现。缺点:视频读取很慢,对于大规模视频训练任务,严重影响模型的迭代效率。

  • 封装 ImageRecordIter 接口:以每个视频取 3 帧为例,先将视频的数据封装成结构为(3batchsize, channel, height, width)的图像数据,将标签封装成(3batchsize,)的结构;然后调用 ImageRecordIter,将图像数据 reshape 成(batchsize, 3, channel, height, width),并将标签进行稀疏采样成(batchsize,)的结构。

  • 基于以上两种方法,我们做了三组性能对比实验,结果如下:




通过对比,可以看到:


  • 基于 Rec 格式的数据读取速度约为使用 opencv 读取图像速度的 18 倍;

  • 基于 Rec 格式的数据读取速度与 GPU 数正相关,4 个 GPU 的训练速度大概是单个 GPU 的 4 倍,即多 GPU 训练性能提升显著;

  • OpenCV 读取视频图像时,单 GPU 和多 GPU 的读取速度相近,即使用多 GPU 对训练速度的提升几乎没有帮助;

  • OpenCV 读取视频图像,多线程(10)读取比单线程读取速度有提升,但提升有限;


以上实验结果的测试环境:


MXNet 版本:1.0.1


网络结构:BN-Inception


批次数(BatchSize):50


机器:GTX1080ti


训练数据类别数(num_class):101


视频处理:视频采样 3 帧,每帧大小 256x320


实际应用中,训练数据 10W 视频,每个视频截取 10 帧时,采用 resnet-200 在 titan x 上训练 20 个 epoch,采用 cv2.imread 四个线程 io 需要~228 小时,而基于 Rec 视频迭代器只需~22 小时。


作者介绍:付志康,美图云视觉技术部门,计算机视觉工程师。


本文转载自美图技术公众号。


原文链接:https://mp.weixin.qq.com/s/Nq-fZY1L_ULO5DtBVg8eAw


2020-02-24 19:181351

评论

发布
暂无评论
发现更多内容

A股迎来中报季,合合信息文档解析技术辅助大模型深度解读财报

合合技术团队

金融 PDF 科技

Plugin Alliance Bettermaker Passive Equalizer(Bettermaker无源均衡器)

Rose

FCPX插件motionVFX mLowers动态下标题

Rose

fcpx插件 fcpx标题模板 motionVFX mLowers 动态下标题

ps天文景观插件 Astro Panel Pro for Mac v6.0.0苹果版

Rose

ps天文景观插件 Astro Panel Pro Photoshop插件下载安装

文献解读-《Beta-amylase and phosphatidic acid involved in recalcitrant seed germination of Chinese chestnut》

INSVAST

农业 基因数据分析 生信服务

StarRocks 巧用 Storage Volume,强大又便捷

Ding_Kai

数据库 StarRocks

探索最佳无代码低代码工具:加速 Web 应用开发

NocoBase

低代码 无代码 Web应用开发

Arturia V Collection X for mac(经典合成器和键盘合集) v27.08.2024最新版

Rose

合成器 Arturia V Collection X

Output Thermal for Mac 操作简便的动态多级失真插件

Rose

从零开始带你玩转 AI 变现公开课

测吧(北京)科技有限公司

测试

Skew for mac 快速倾斜形状sketch工具+Skew使用方法

Rose

sketch工具 Skew插件下载 快速倾斜形状工具插件

After Effects插件:AutoCircularMotion(图层圆周运动工具AE脚本)

Rose

After Effects插件 图层圆周运动工具 AutoCircularMotion

15款中国风大气水墨笔触PS笔刷

Rose

StarRocks 存算分离成本优化最佳实践

Ding_Kai

数据库 StarRocks

深入解析京东商品详情API返回值:从零到一的全面指南

代码忍者

API 测试 API 策略

从零开始带你玩转 AI 变现公开课

测试人

人工智能 软件测试

分享 | 某头部城商行如何提升反欺诈能力

芯盾时代

金融 手机银行 反欺诈

聊聊测试数据的生成方法

老张

软件测试 质量保障 测试数据

人工智能 | 清华大学ChatGLM大模型

测吧(北京)科技有限公司

测试

fcpx音量大小调节插件 CrumplePop Levelmatic

Rose

fcpx音量大小调节插件 CrumplePop Levelmatic

VMware Cloud Foundation 9 发布 - 领先的多云平台

sysin

云计算 vSphere vmware esxi vcf

mac游戏:魔兽争霸3冰封王座Warcraft III for mac 版

你的猪会飞吗

魔兽争霸3 冰封王座 Mac游戏下载

从工程师视角看 “Multi-Agent as a Service (MAaaS)”

Baihai IDP

AI LLMs 企业号 8 月 PK 榜 Baihai IDP AI Agents

华为亮相KubeCon China 2024 ,引领全球智能化新浪潮

新消费日报

MXNet 视频I/O读取速度提升18倍的优化策略_行业深度_付志康_InfoQ精选文章