QCon北京「鸿蒙专场」火热来袭!即刻报名,与创新同行~ 了解详情
写点什么

Amazon SageMaker 现已推出:Deep Graph Library

  • 2019-12-11
  • 本文字数:2348 字

    阅读完需:约 8 分钟

Amazon SageMaker 现已推出:Deep Graph Library

今天,我们很高兴地宣布,为简化图神经网络的实现而构建的开源库 Deep Graph Library 现已在 Amazon SageMaker 上推出。


近年来,由于具有从复杂数据(例如自由文本、图像或视频)中提取复杂模式的强大能力,深度学习席卷了整个世界。但是,许多数据集不属于这些类别,使用图形更容易表达。 我们的直觉告诉我们,像卷积神经网络或递归神经网络这样的传统神经网络架构不适用于此类数据集,因此需要一种新的方法。


图神经网络初级读本


图神经网络 (GNN) 是当今机器学习领域最蓬勃发展的方向之一,这些参考文献将带您入门。


GNN 用于在数据集上训练预测模型,例如:


  • 社交网络数据集,其中的图形显示熟人之间的联系;

  • 推荐系统数据集,其中的图形显示顾客与物品之间的互动;

  • 化学分析数据集,其中化合物被建模为由原子和化学键组成的图形;

  • 网络安全数据集,其中的图形描述了源 IP 地址和目标 IP 地址之间的连接;

  • 等等!


在大多数情况下,这些数据集非常庞大,并且只有部分标记。以一个欺诈检测场景为例,在该场景中,我们将尝试通过分析某人与已知欺诈者的联系,来预测其为欺诈行为者的可能性。这个问题可以定义为半监督学习任务,其中只有一小部分图节点将被标记(“欺诈者”或“合法者”)。与尝试构建一个大型的手工标记数据集,并对其进行“线性化”以应用传统的机器学习算法相比,这应该是一个更好的解决方案。


解决这些问题需要特定领域的知识(零售、金融、化学等)、计算机科学知识(Python、深度学习、开源工具)和基础设施知识(培训、部署和扩展模型)。很少人能够掌握所有这些技能,这就是我们需要诸如 Deep Graph Library Amazon SageMaker 之类的工具的原因。


Deep Graph Library 简介


Deep Graph Library (DGL) 于 2018 年 12 月首次在 Github 上发布,是一个 Python 开源库,可帮助研究人员和科学家利用其数据集快速构建、训练和评估 GNN。



DGL 建立在流行的深度学习框架之上,例如 PyTorch Apache MXNet。如果您熟悉其中之一,就会发现使用起来得心应手。无论您使用哪种框架,都可以通过这些对初学者友好的示例轻松入门。我还发现 GTC 2019 研讨会的幻灯片和代码非常有用。


一旦完成了玩具示例,就可以开始探索 DGL 中已实现的各种前沿模型了。例如,您可以通过运行以下命令,使用图卷积网路 (GCN) 和 CORA 数据集来训练文档分类模型:


$ python3 train.py --dataset cora --gpu 0 --self-loop


所有模型的代码均可供查看和调整。这些实现已经过 AWS 团队仔细验证,他们验证了性能声明并确保可以重现结果。


DGL 还包含图形数据集的集合,您可以轻松下载并用于试验。


当然,您可以在本地安装和运行 DGL,但是为了为您提供便利,我们将其添加到了 PyTorch 和 Apache MXNet 的深度学习容器中。这样就可以轻松地在 Amazon SageMaker 上使用 DGL,以在任意规模上训练和部署模型,而不必管理服务器。我将向您展示如何操作。


在 Amazon SageMaker 上使用 DGL


我们在 Github 存储库中为 SageMaker 示例添加了完整的示例:在其中一个示例中,我们使用 Tox21 数据集训练了一个用于分子毒性预测的简单 GNN。


我们尝试解决的问题是,计算出新化合物对 12 种不同靶标(生物细胞内的受体等)的潜在毒性。可以想象,这种分析在设计新药时至关重要,而且无需进行体外实验就能快速预测结果,这有助于研究人员将精力集中在最有希望的候选药物上。


数据集包含 8,000 多种化合物:每种化合物均建模为图形(原子是顶点,原子键是边),并标记 12 次(每个目标一个标记)。我们将使用 GNN 建立一个多标签的二元分类模型,使我们能够预测所考察分子的潜在毒性。


在训练脚本中,我们可以轻松地从 DGL 集合中下载所需数据集。


from dgl.data.chem import Tox21


dataset = Tox21()


Similarly, we can easily build a GNN classifier using the DGL model zoo.


from dgl import model_zoo


model = model_zoo.chem.GCNClassifier(


in_feats=args['n_input'],


gcn_hidden_feats=[args['n_hidden'] for _ in range(args['n_layers'])],


n_tasks=dataset.n_tasks,


classifier_hidden_feats=args['n_hidden']).to(args['device'])


其余代码大部分是原始的 PyTorch,如果您熟悉此库,则使用起来就应该能够驾轻就熟。


要在 Amazon SageMaker 上运行此代码,我们要做的就是使用 SageMaker 模拟器,并传递 DGL 容器的全名并将训练脚本的名称作为超参数。


estimator = sagemaker.estimator.Estimator(container,


role,


train_instance_count=1,


train_instance_type='ml.p3.2xlarge',


hyperparameters={'entrypoint': 'main.py'},


sagemaker_session=sess) code_location = sess.upload_data(CODE_PATH, bucket=bucket, key_prefix=custom_code_upload_location) estimator.fit({'training-code': code_location})


<output removed> epoch 23/100, batch 48/49, loss 0.4684


epoch 23/100, batch 49/49, loss 0.5389


epoch 23/100, training roc-auc 0.9451


EarlyStopping counter: 10 out of 10


epoch 23/100, validation roc-auc 0.8375, best validation roc-auc 0.8495


Best validation score 0.8495


Test score 0.8273


2019-11-21 14:11:03 Uploading - Uploading generated training model


2019-11-21 14:11:03 Completed - Training job completed


Training seconds: 209


Billable seconds: 209


现在,我们可以获取 S3 中经过训练的模型,并将其用于预测大量化合物的毒性,而无需进行实际实验。真是好用!


现已推出!


您现在就可以在 Amazon SageMaker 上使用 DGL。


请试一试,并通过 DGL 论坛Amazon SageMakerAWS 平台或您常用的 AWS Support 联系方式向我们发送反馈。


本文转载自 AWS 技术博客。


原文链接:https://amazonaws-china.com/cn/blogs/china/now-available-on-amazon-sagemaker-the-deep-graph-library/


2019-12-11 15:32689

评论

发布
暂无评论
发现更多内容

现货合约量化交易系统开发搭建

薇電13242772558

数字货币 策略模式

区块链大趋势

CECBC

数字经济

2021年编排将成为DevSecOps关键推动者

啸天

DevSecOps 应用安全 开发安全

在函数计算中到底该不该使用 VPC?

donghui

Serverless

“区块链+数字身份”,道路坎坷前途光明

CECBC

数字技术

工作11年,从阿里P8出来,头发也没了,人也虚了,就剩下这份笔记了!

Java架构之路

Java 程序员 架构 面试 编程语言

nodejs事件和事件循环详解

程序那些事

nodejs 异步编程 程序那些事 事件和事件循环 nodejs event

并发阻塞队列(BlockingQueue)— 生产者消费者模式核心部件

李尚智

Java 架构 jdk 设计模式

字节内部MySQL宝典意外流出!极致经典,堪称数据库的天花板

比伯

Java 编程 架构 面试 程序人生

企业如何预防短信验证码被别人盗用

香芋味的猫丶

短信防刷 短信轰炸机 短信验证码 短信防轰炸 短信防火墙

Linux网络之 从 C10K 到 DPDK

赖猫

c++ Linux linux编程 C10K DPDK

Linux I/O 原理和 Zero-copy 技术全面揭秘

赖猫

c++ Linux linux编程 服务器开发 I/O

Java 程序经验小结:类层次优于标签类

后台技术汇

28天写作

DeFi流动性挖矿管理系统开发|去中心化金融借贷系统开发

W13902449729

去中心化金融借贷系统开发 DeFi流动性管理系统开发

持续集成对IT团队和企业分别有哪些好处?

禅道项目管理

DevOps 运维 开发 CI/CD

为什么建议没事不要随便用工厂模式创建对象?

李尚智

Java 学习 设计模式

阿里面试官纯手打:金九银十跳槽必会Java核心知识点笔记整理

Java架构之路

Java 程序员 架构 面试 编程语言

区块链发展应以密码应用创新为根基

CECBC

区块链 密码学

盘点2020|征文大赛获奖名单公布

InfoQ写作社区官方

盘点2020 热门活动

五分钟快速掌握Maven的核心概念

Java架构师迁哥

阿里2021年首次公开五份Java并发编程全彩小册:模型+原理+应用+模式+面试题五管齐下

Java架构追梦

Java 学习 架构 面试 并发编程

厉害了!来看看这份超全面的《Android面试题及解析》,一线互联网公司面经总结

欢喜学安卓

android 程序员 面试 移动开发

案例研究之聊聊 QLExpress 源码 (六)

小诚信驿站

28天写作 QLExpress源码 聊聊源码

WiFi6 与 5G 的异同分析

石君

5G wifi 28天写作

K线成交量管理系统开发、成交量管理系统开发

W13902449729

K线成交量管理系统开发 成交量管理系统开发

音乐混音怎么做?教你完美制作野狼disco与周杰伦双节棍合唱!

懒得勤快

音频技术 音频制作 混音 音乐混音

中美上市软件公司对比中的投资启示

ToB行业头条

超强Android进阶路线知识图谱:Kotlin可能带来的一个深坑,持续更新中

欢喜学安卓

android 程序员 面试 移动开发

细节!3部分讲明白HotSpot:运行时+编译器+垃圾回收器

996小迁

Java 架构 虚拟机 hotspot

Hadoop的MapReduce到底有什么问题?

hanke

大数据 hadoop spark mapreduce 开源

龙归科技 |软件的成本下降

龙归科技

身份认证 企业信息化 SSO

Amazon SageMaker 现已推出:Deep Graph Library_行业深度_AWS_InfoQ精选文章