写点什么

Apache Kylin 权威指南(二):工作原理

  • 2020-04-14
  • 本文字数:1414 字

    阅读完需:约 5 分钟

Apache Kylin权威指南(二):工作原理

编者按:本文节选自华章科技大数据技术丛书 《Apache Kylin 权威指南(第 2 版)》一书中的部分章节。

Apache Kylin 的工作原理

Apache Kylin 的工作原理本质上是 MOLAP(Multidimensional Online Analytical Processing) Cube,也就是多维立方体分析。这是数据分析中相当经典的理论,在关系型数据库年代就有广泛应用,下面对其做简要介绍。

维度和度量简介

在说明 MOLAP Cube 之前,需要先介绍一下维度(dimension)和度量(measure)这两个概念。


简单来讲,维度就是观察数据的角度。比如电商的销售数据,可以从时间的维度来观察(如图 1 的左图所示),也可以进一步细化从时间和地区的维度来观察(如图 1 的右图所示)。维度一般是一组离散的值,比如时间维度上的每一个独立的日期,或者商品维度上的每一件独立的商品。因此,统计时可以把维度值相同的记录聚合起来,应用聚合函数做累加、平均、去重复计数等聚合计算。



图 1 维度和度量


度量就是被聚合的统计值,也是聚合运算的结果,它一般是连续值,如图 1 中的销售额,抑或是销售商品的总件数。通过比较和测算度量,分析师可以对数据进行评估,比如今年的销售额相比去年有多大的增长、增长的速度是否达到预期、不同商品类别的增长比例是否合理等。

Cube 和 Cuboid

了解了维度和度量,就可以对数据表或者数据模型上的所有字段进行分类了,它们要么是维度,要么是度量(可以被聚合)。于是就有了根据维度、度量做预计算的 Cube 理论。


给定一个数据模型,我们可以对其上所有维度进行组合。对于 N 个维度来说,所有组合的可能性有 2N 种。对每一种维度的组合,将度量做聚合运算,运算的结果保存为一个物化视图,称为 Cuboid。将所有维度组合的 Cuboid 作为一个整体,被称为 Cube。所以简单来说,一个 Cube 就是许多按维度聚合的物化视图的集合。


举一个具体的例子。假定有一个电商的销售数据集,其中维度有时间(Time)、商品(Item)、地点(Location)和供应商(Supplier),度量有销售额(GMV)。那么,所有维度的组合就有 24=16 种(如图 2 所示),比如一维度(1D)的组合有[Time][Item][Location][Supplier]四种;二维度(2D)的组合有[Time, Item][Time, Location][Time、Supplier][Item, Location][Item, Supplier][Location, Supplier]六种;三维度(3D)的组合也有四种;最后,零维度(0D)和四维度(4D)的组合各有一种,共计 16 种组合。


计算 Cuboid,就是按维度来聚合销售额(GMV)。如果用 SQL 来表达计算 Cuboid [Time, Location],那就是:


select Time, Location, Sum(GMV) as GMV from Sales group by Time, Location
复制代码



图 2 四维 Cube


将计算的结果保存为物化视图,所有 Cuboid 物化视图的总称就是 Cube 了。

工作原理

Apache Kylin 的工作原理就是对数据模型做 Cube 预计算,并利用计算的结果加速查询。过程如下:


(1)指定数据模型,定义维度和度量。


(2)预计算 Cube,计算所有 Cuboid 并将其保存为物化视图。


(3)执行查询时,读取 Cuboid,进行加工运算产生查询结果。


由于 Kylin 的查询过程不会扫描原始记录,而是通过预计算预先完成表的关联、聚合等复杂运算,并利用预计算的结果来执行查询,因此其速度相比非预计算的查询技术一般要快一个到两个数量级。并且在超大数据集上其优势更明显。当数据集达到千亿乃至万亿级别时,Kylin 的速度甚至可以超越其他非预计算技术 1000 倍以上。


图书简介https://item.jd.com/12566389.html



相关阅读


Apache Kylin权威指南(一):背景历史和使命


2020-04-14 10:001320

评论

发布
暂无评论
发现更多内容

版本控制 | 如何利用虚幻引擎进行虚拟制作,为电影制作带来更多可能

龙智—DevSecOps解决方案

游戏引擎 虚幻引擎 虚幻引擎5 虚拟制作

备战金三银四:1200道Java面试真题合集,助你搞定面试官

架构师之道

Java 编程 程序员 java面试

AR Engine毫秒级平面检测,带来更准确的呈现效果

HarmonyOS SDK

HMS Core

用javascript分类刷leetcode21.树(图文视频讲解)

js2030code

JavaScript LeetCode

前端leetcde算法面试套路之堆

js2030code

JavaScript LeetCode

用Apipost进行Websocket调试教程

不想敲代码

微服务 websocket 接口调试

从焊接角度聊一聊,设计PCB的5个建议

华秋PCB

工具 PCB PCB设计 焊接

新泰山众筹SUN4.0系统开发模式详情

开发微hkkf5566

KCL 与其他 Kubernetes 配置管理工具的异同 - Helm 篇 - Helm 篇 [一个自研编程语言能做什么?(系列 3)]

Peefy

Kubernetes DevOps 编程语言 #开源

ITSM | Atlassian被Gartner评为IT服务管理平台魔力象限的领导者

龙智—DevSecOps解决方案

Atlassian ITSM Gartner

“堆外内存”这玩意是真不错,我要写进简历了。

why技术

Java 程序员 面试

drools规则动态化实践

京东科技开发者

Java 规则引擎 业务逻辑 企业号 2 月 PK 榜 drl

对比开源丨Prometheus 服务多场景存储压测全解析

阿里巴巴中间件

阿里云 云原生 Prometheus

简单好上手!1分钟带你体验Apipost

叶小柒

架构作为6

梁山伯

开源工具系列3:Prowler

HummerCloud

云安全

简单了解下linux与windows两者的区别-行云管家

行云管家

Linux

DiffusionDet 用扩散模型解决目标检测

Zilliz

2023计算机领域顶会(A类)以及ACL 2023自然语言处理(NLP)研究子方向领域汇总

汀丶人工智能

人工智能 自然语言处理 2月日更 计算语言学协

云原生微服务技术趋势解读

阿里巴巴中间件

阿里云 开源 微服务 云原生

C++数据结构

老浩

JVM参数:带你认识-X和-XX参数

华为云开发者联盟

开发 华为云 企业号 2 月 PK 榜 华为云开发者联盟

技术交错革新,移动开发平台机会和挑战并存

FinFish

移动开发 移动开发平台 移动应用开发

落地DevOps的路线图

老张

DevOps 软件工程

SAP的良好业绩,能否敲响国内厂商的警钟?

ToB行业头条

Dubbo 3 之 Triple 流控反压原理解析

阿里巴巴中间件

阿里云 微服务 云原生

助力芯片产业蓬勃发展,诚翔滤器推出光刻机过滤器

电子信息发烧客

堡垒机真的安全吗可靠吗?大家喜欢哪款?

行云管家

等保 堡垒机 等级保护 堡垒机品牌

工赋开发者社区 | 达摩院开源半监督学习框架Dash,刷新多项SOTA

工赋开发者社区

婚庆LED显示屏打造梦幻婚礼

Dylan

LED显示屏 led显示屏厂家 户内led显示屏

共赴元宇宙新纪元,华为云VR开发应用大赛总决赛倒计时7天!

华为云开发者联盟

人工智能 华为云 VR开发应用 企业号 2 月 PK 榜 华为云开发者联盟

Apache Kylin权威指南(二):工作原理_架构_Apache Kylin核心团队_InfoQ精选文章