速来报名!AICon北京站鸿蒙专场~ 了解详情
写点什么

英特尔 NNP 芯片家族迎来新成员,面向推理及应用的新品已正式商用

  • 2019-11-13
  • 本文字数:1476 字

    阅读完需:约 5 分钟

英特尔NNP芯片家族迎来新成员,面向推理及应用的新品已正式商用

在今年 7 月,InfoQ 曾对英特尔公司副总裁兼人工智能产品事业部总经理 Naveen Rao 进行过一次专访,在采访中,Naveen 透露面向训练及推理的 NNP 系列产品会在年底发布。经过四个月的等待,我们迎来了这两款新品。

2019 年 11 月 12 日,2019 英特尔人工智能峰会在美国旧金山召开。会上英特尔展示了一系列新产品进展,包括 Nervana 神经网络处理器 NNP 系列新品:面向训练的 NNP-T1000 和面向推理的 NNP-I1000,以及下一代 Movidius Myriad 视觉处理单元(VPU),用于边缘媒体、计算机视觉和推理应用。

NNP 家族迎来新成员

Naveen Rao 表示,新推出的英特尔 Nervana 神经网络处理器现已投入生产并完成客户交付,是系统级人工智能解决方案的一部分。


英特尔 Nervana 神经网络推理处理器(Intel Nervana NNP-I),代号 Spring Hill,基于 10nm Ice Lake 处理器架构,支持所有的主流深度学习框架,在 ResNet50 上的效率可达 4.8 TOPs/W,功率范围为 10W 到 50W 之间 。具备高能效和低成本,且其外形规格灵活,非常适合在实际规模下运行高强度的多模式推理。



而英特尔 Nervana 神经网络训练处理器(Intel Nervana NNP-T)采用的是台积电 16nm 制程工艺,代号 Spring Crest,拥有 270 亿个晶体管,硅片总面积达 680 平方毫米,具有高可编程性,支持所有主流深度学习框架。据介绍,NNP-T 在计算、通信和内存之间取得了平衡,不管是对于小规模群集,还是最大规模的 pod 超级计算机,都可进行近乎线性且极具能效的扩展。



目前这两款产品面向百度、 Facebook 等前沿人工智能客户,并针对他们的人工智能处理需求进行了定制开发。

新一代 Movidius VPU

新一代的 Movidius Myriad 视觉处理单元代号为 KEEM BAY,是一个高性能、低能耗 VPU,其架构是专门为边缘定制的,主要是用作视觉和媒介媒体处理。



和上一代相比,新产品的性能提升了 10 倍,同时可以提供更高密度的、可扩展的 AI 的加速。英特尔方面表示,与竞争对手相比,KEEM BAY 的性能比 Nvidia TX2 要高 4 倍,比 ASCEND 310 快 1.25 倍;从效率上来看,KEEM BAY 要比 Xavier 高出 4 倍。


据介绍,新的英特尔 Movidius VPU 计划于 2020 年上半年上市。

其他工具发布

英特尔还发布了全新的英特尔 DevCloud for the Edge,与英特尔 Distribution of OpenVINO 工具包共同解决开发人员的主要痛点,即在购买硬件前,能够在各类英特尔处理器上尝试、部署原型和测试 AI 解决方案。OPENVINO 可以让客户来编写自己的神经网络模型,实现性能最大化,并且能够为对架构的知识不甚了解的人,提供简化的方法来实现更高的性能。


除了 OPENVINO 以外,DevCloud 也是今天发布的一大亮点。这是一款面向边缘进行优化的产品,实际上已经在六个月前推出,通过 DevCloud for the Edge,用户可以将模型在 DL Boost 深度学习加速方案里进行优化,同时获得相应的硬件的配置建议,以找到最适合的、最高效的硬件配置。

结语

身为老牌硬件大厂,英特尔的转型之路一直备受关注,随着用户对数据处理、算力的要求进一步提升,英特尔也顺应时代推出了如 NNP 系列芯片这样的产品。Naveen Rao 在演讲中说:


“在计算、内存、互联、封装等领域,每一个要素都对用户的体验和性能产生影响…随着人工智能的进一步发展,计算硬件和内存都将到达临界点。如果要在该领域继续取得巨大进展,专用型硬件必不可少。”


不难看出,专用型芯片市场仍有巨大的潜力有待挖掘,Naveen 更是大胆预测:2019 年英特尔在 AI 领域的收入能够达到 35 亿美元。但由此引发的竞争也将会是更加激烈的,英伟达、AMD 等一众芯片厂商更是不会放过这样的发展机会,未来专用芯片市场又将呈现出怎样的局势,实在令人期待。


2019-11-13 16:171544
用户头像
陈思 InfoQ编辑

发布了 576 篇内容, 共 279.7 次阅读, 收获喜欢 1301 次。

关注

评论

发布
暂无评论
发现更多内容

<<长津湖>> 有感

Tiger

28天写作

【Promise 源码学习】第十一篇 - Promise.all 的实现

Brave

源码 Promise 12月日更

电子屏幕 or 风月宝鉴

mtfelix

su 和 sudo,你用对了吗?

xcbeyond

Linux 28天写作 12月日更 sudo

元宇宙:虚实相生的网络世界

石云升

学习笔记 28天写作 元宇宙 12月日更

Golang Gin 框架之日志 DIY(七)

liuzhen007

28天写作 12月日更

Python Qt GUI设计:QTableView、QListView、QListWidet、QTableWidget、QTreeWidget和QTreeWidgetltem表格和树类(提升篇—1)

不脱发的程序猿

Python qt GUI设计 Qt Company 表格和树类

为什么不要急着告诉孩子答案?

Justin

心理学 教育 28天写作

如何设计微服务架构

天天向上

架构实战营

数据一致性

卢卡多多

数据一致性 28天写作 12月日更

Flink 实践教程-进阶(2):复杂格式数据抽取

腾讯云大数据

flink 流计算 Oceanus

SAP 产品的 Field Extensibility

汪子熙

28天写作 扩展 ERP 12月日更 企业管理软件

浅谈应用架构设计思路

陈俊

应用架构 设计指南

关于元宇宙的一些认识

李印

学习笔记 元宇宙

Android C++系列:Linux线程(一)概念

轻口味

c++ android 28天写作 12月日更

一个简单的例子教会您使用 javap

汪子熙

Java 性能调试 28天写作 12月日更 javap

搭建K8s容器化应用的开发调试环境

xiaoboey

Docker Kubernetes k3s Telepresence Skaffold

如何调用潜意识有效收集演讲素材-从右脑到左脑的切换

将军-技术演讲力教练

JavaScript数据结构之 Array

devpoint

JavaScript ES6 array 内容合集 签约计划第二季

JavaScript中的作用域和预解析

你好bk

JavaScript 大前端 ES6 HTML5, CSS3 12月日更

实用机器学习笔记三:网页数据抓取

打工人!

机器学习 学习笔记 12月日更 实用机器学习

Mac 常用远程连接 ubuntu 工具对比

悟空聊架构

28天写作 Mac 软件 悟空聊架构 12月日更 远程连接

支付宝商户号稳定性解决方案

hackstoic

支付宝 解决方案 To B业务

Vite2 + Vue3 + TypeScript + Pinia 搭建一套企业级的开发脚手架【值得收藏】

前端开发爱好者

typescript 大前端 Vue3 Vite2

linux常用命令-历史命令和自动补全

Java个体户

Linux

渗透测试如何入门?

喀拉峻

网络安全 安全

34 K8S之ServiceAccount及X509数字证书

穿过生命散发芬芳

k8s 28天写作 12月日更

Flink 实践教程-入门(9):Jar 作业开发

腾讯云大数据

flink 流计算 Oceanus

Flink 实践教程-进阶(1):维表关联

腾讯云大数据

flink 流计算 Oceanus

创业研发团队的组织建设-软件工作流程

wood

创业 敏捷开发 28天写作

世界女性科技群落(二):种姓制度与数字微光下的生长录

脑极体

英特尔NNP芯片家族迎来新成员,面向推理及应用的新品已正式商用_AI&大模型_陈思_InfoQ精选文章