写点什么

你与 Kafka 监控进阶,只差一个“视角”的距离

  • 2019-08-11
  • 本文字数:2799 字

    阅读完需:约 9 分钟

你与Kafka监控进阶,只差一个“视角”的距离

Kafka,作为分布式高吞吐发布订阅的消息系统,广泛应用于消息队列、大数据流计算分析等场景。本文介绍了 Kafka 系统监控方案,以及站在用户视角阐述如何监控好 Kafka 实际产品。

Kakfa 监控实践

监控工具选择

实际使用中对比了多种 Kafka 监控工具,最终选择如下几种工具:


Kafka Monitor:这是 LinkedIn 开源的 Kafka 核心功能监控工具,并且提供了可视化界面。它可以模拟数据生产并消费,基本上覆盖了黑盒监控大部分指标,包括集群核心功能、数据读写、读写延迟等。使用者使用成本也相对简单,只需对接告警系统即可。


如果你的产品用到了 Kafka,强烈推荐使用 Kafka Monitor。



▲图一 Kafka Monitor 可视化界面



▲表一 Kafka Monitor 监控指标样例


Kafka Manager:这是 Yahoo 开源的 Kafka 管理工具,更偏重于对 Kafka 集群指标采集,同时也有一些主题管理功能。



▲图二 Kafka Manager 界面


**Jmxtrans+Influxdb:**Jmxtrans 通过 Jmx 端口可以采集 Kafka 多种维度监控数据,预存储在 Influxdb。Jmxtrans 也是非常优秀的工具,通过它采集的数据项很多,因此采集项筛选是一个难题,筛选后的数据不仅可以作为仪表盘展现使用,也可以为后续产品层面的监控做准备。


集群层面的空间使用率相关数据,需要自研工具来完成,附件中提供了参考脚本。



▲图三 Kafka 运维仪表盘部分指标

监控指标

确定黑盒监控指标

黑盒监控指标不符合预期说明集群不能正常工作或出现异常,它更多是一种现象。常用的黑盒监控指标有:集群核心功能、数据读写、读写延迟等。

确定白盒监控指标

对比其他存储组件,大部分监控指标是通用的,或者能找到类似的监控指标,白盒监控是黑盒监控的补充,服务于故障定位,从集群容量、流量、延迟、错误四个方面梳理。



▲表二 梳理 Kafka 监控指标分类

部分采集指标

核心功能


  • 采集项:produce-availability-avg

  • 说明:单独创建监控主题,对其进行功能监控,覆盖消息生成、写入、消费整个生命周期

  • 数据来源:Kafka Monitor


主题操作


  • 采集项:topic-function

  • 说明:覆盖主题的整个生命周期(创建出的主题要清理,否则主题过多,在实例恢复时会很慢)

  • 数据来源:自研


延迟


  • 采集项:records-delay-ms-avg

  • 说明:生产、消费延迟时间

  • 来源:Kafka Monitor

  • 采集项:records-delay-ms-max

  • 说明:最大延迟时间

  • 来源:Kafka Monitor


流量


  • 采集项:kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec,topic=*

  • 说明:某一主题每秒写入

  • 来源:Jmxtrans

  • 采集项:kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec,topic=*

  • 说明:某一主题每秒读出

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec,topic=*

  • 说明:某一主题每秒写入消息数

  • 数据来源:Jmxtrans

  • 采集项:kafka.network:type=RequestMetrics,name=RequestsPerSec,request=Produce

  • 说明:每秒 Produce 的请求次数

  • 数据来源:Jmxtrans


容量


  • 采集项:kafka.log:type=Log,name=Size,topic=,partition=

  • 说明:分区大小

  • 数据来源:Jmxtrans

  • 采集项:topicSizeALL

  • 说明:某一主题大小(需要基于各 Broker 数据进行计算)

  • 数据来源:自研


错误


  • 采集项:kafka.controller:name=OfflinePartitionsCount,type=KafkaController

  • 说明:没有 Leader 的分区数

  • 数据来源:Jmxtrans

  • 采集项:kafka.controller:name=ActiveControllerCount,type=KafkaController

  • 说明:是否为活跃控制器(整个集群只能有 1 个实例为 1)

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:type=ReplicaFetcherManager,name=MaxLag,clientId=Replica

  • 说明:副本落后主分片的最大消息数量

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions

  • 说明:正在做同步的分区数量

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:type=ReplicaManager,name=LeaderCount

  • 说明:Leader 的 Replica 的数量

  • 数据来源:Jmxtrans

  • 采集项:kafka.server:clientId=,name=ConsumerLag,partition=,topic=*,type=FetcherLagMetrics

  • 说明:消费延迟量(Lag)

  • 数据来源:Jmxtrans

  • 采集项:kafka.log:type=Log,name=LogEndOffset,topic=,partition=

  • 说明:每个分区最后的 Offset

  • 数据来源:Jmxtrans

Kafka 监控经验

  • 通过 Jmxtrans 获取到采集项之后,如果期望获取到全局数据,则必须对所有 Broker 上的数据进行汇总计算,附件中提供了部分 Jmxtrans 采集项计算脚本。

  • 在分区大小告警阈值设置上,主题的某个分区不要过大(我们场景,最大为 800G),否则,在迁移分区时会很慢。

  • Kafka 在不同数据目录分配分区时,会按照分区数来均衡。因此,实际部署中,不同实例最好做到:数据目录大小、数据目录数一致。否则,在集群达到上千个主题后,你的分区迁移工作量会很大。

  • 预采集数据。监控并不能一蹴而就,随着产品或集群变化,需要迭代。因此,需要预采集那些当前看似没有价值的数据,当需要时,所存即所用。另外,从历史故障中进行总结,也可以发掘一些待采集的监控数据。

  • 针对 Kafka,一个可行的监控数据存储、展现工具集:Jmxtrans+Influxdb+Grafana。Grafana 既可以充当巡检仪表盘,也可充当监控数据查看工具。

  • 在 Kafka 采集项获取或分析数据时,Jmxcmd 也是不错的小工具。

Kafka 实际产品监控

数据总线、Kafka 消息队列等公有云产品,一般是基于 Kafka 来实现。按照上述监控方法完善 Kafka 集群监控,可以做到大部分 Kafka 问题都能及时发现。但对用户来说,产品本身的监控才更为重要。

产品 SLO 指标

按照 Google SRE 提出的 SLO(Service Level Objectives 服务等级目标)和“错误预算”理论与实践,需要从用户视角对 Kafka 相关产品进行分析并监控。


以“数据总线”产品为例,这些产品一般提供给用户的核心功能主要有:


  • 数据接入

  • 数据归档


在我们实际产品中,总结了历史故障,确立了当前产品的 SLO 指标,并对其进行监控。部分 SLO 指标:


  • 流数据总线生命周期健康>99.9%

  • 重点用户主题健康>99.9%

  • 归档延迟数据<20 分钟



▲图四 数据总线 SLO 及错误预算部分指标预览

满足多租户

如果只关注整体 SLO 指标,那么有些租户可能会遗漏,对于这些租户的核心功能也需要监控,此时,我们需要借助已有监控工具预采集的数据,这些数据包含了所有主题的相关数据。这样,当我们需要知道用户的主题时,就能快速搜索到对应主题的流量、延迟等密切指标,及时反馈到租户。


可以为租户搜索到的部分指标:


  • kafka.cluster:name=UnderReplicated,partition=*,type=Partition

  • kafka.log:name=LogEndOffset,partition=*,type=Log

  • kafka.log:name=LogStartOffset,partition=*,type=Log

  • kafka.log:name=Size,partition=*,type=Log

  • kafka.server:name=BytesInPerSec,type=BrokerTopicMetrics

  • kafka.server:name=BytesOutPerSec,type=BrokerTopicMetrics

  • kafka.server:name=MessagesInPerSec,topic=*,type=BrokerTopicMetrics



▲图五 搜索某租户部分 SLO 指标结果


附录:


Kafka 监控相关脚本


https://github.com/cloud-op/monitor/tree/master/kafka


文章转载自微信公众号京东云。


2019-08-11 08:3010468

评论

发布
暂无评论
发现更多内容

ABAP 文件上/下载

Jasen Ye

upload abap download template GRAPHICS

微服务架构下消息服务多通道设计思路

全象云低代码

微服务 低代码 后端开发 消息中间件 后端技术

从多快好省到好快省多,您的项目管理走对了吗?

禅道项目管理

项目管理

如何升级到 React 18

CRMEB

Meetup预告|云原生时代热门监控利器解析与应用

云智慧AIOps社区

运维 云原生 安全 监控工具

知识管理在企业竞争发展中的作用

小炮

知识管理

从0到1落地电商小程序之微服务设计

晨亮

「架构实战营」

【直播回顾】OpenHarmony知识赋能第四期第三课——I2C驱动开发

OpenHarmony开发者

OpenHarmony 驱动开发

揭秘!网易有道技术岗实习生都在做什么?

有道技术团队

招聘 实习 网易有道

WebGL 及其在 WebRTC 中的应用

ZEGO即构

WebRTC WebGL 实时音视频 即构科技

你的“数学潜意识”原来可以被唤醒!

博文视点Broadview

大数据培训连续登录经典面试案例

@零度

大数据

手把手教你从Apk中取出算法

奋飞安全

android 安全 java

项目管理标准化的武林秘籍

大智若愚

团队管理 项目管理 标准化 软技能 标准框架

加快云原生技术转型, 智能调度登陆华为云DevOps: 增速,节源

华为云开发者联盟

软件 DevOps 代码托管 智能调度 华为云DevOps

从HDFS的写入和读取中,我发现了点东西

华为云开发者联盟

hdfs HDFS写入 HDFS读取 文件读取

速度和质量不可兼得,为什么DevOps落地如此困难?

飞算JavaAI开发助手

对于金融机构而言,为什么选择私有化IM比企业微信、钉钉更好?

BeeWorks

【愚公系列】2022年03月 Docker容器 Kafka集群的搭建

愚公搬代码

3月月更

windows下C与C++执行cmd命令并实时获取输出

DS小龙哥

3月月更

数仓如何设置大小写不敏感函数

华为云开发者联盟

MySQL DWS GaussDB(DWS) 大小写不敏感函数 GUC参数

ABAP excel数据上传函数改造

Jasen Ye

Excel upload abap

一首古诗带来的图数据库大冒险

NebulaGraph

知识图谱 实践案例 分布式图数据库

Kubernetes中API的不同版本, Alpha, Beta, Stable 都是什么?

工程师薛昭君

Kubernetes API

无监控不运维—浅述各种监控方案使用场景

穿过生命散发芬芳

3月月更

实践丨SpringBoot整合Mybatis-Plus项目存在Mapper时报错

华为云开发者联盟

spring 容器 Spring Boot 测试 Mybatis-Plus

web前端培训如何用CSS来实现透明方格

@零度

CSS web前端

java培训如何用反射做简易 Spring IOC 容器

@零度

Java springloc

云原生时代已来,计算机教育如何因「云」而变?

阿里云弹性计算

云原生 ECS 计算机教育

Facebook 开源 Golang 实体框架 Ent 现已支持 TiDB

PingCAP

SeaTunnel 在 oppo 的特征平台实践 | ETL 平台数据处理集成

Apache SeaTunnel

Big Data 大数据平台 大数据开发 apache 社区 opensource

你与Kafka监控进阶,只差一个“视角”的距离_软件工程_京东云应用研发部_InfoQ精选文章