写点什么

通义千问能看图了!阿里云开源视觉语言大模型 Qwen-VL ,支持图文双模态输入

  • 2023-08-25
    北京
  • 本文字数:3090 字

    阅读完需:约 10 分钟

通义千问能看图了!阿里云开源视觉语言大模型Qwen-VL ,支持图文双模态输入

继 8 月初阿里云开源通义千问 70 亿参数通用模型 Qwen-7B 和对话模型 Qwen-7B-Chat 后,又一大模型实现了开源。 

阿里云开源通义千问多模态大模型 Qwen-VL

 

InfoQ 获悉,8 月 25 日,阿里云开源通义千问多模态大模型 Qwen-VL。这是继 8 月初阿里云开源通义千问 70 亿参数通用模型 Qwen-7B 和对话模型 Qwen-7B-Chat 后,又开源的一大模型。

 

据介绍,Qwen-VL 是支持中英文等多种语言的视觉语言(Vision Language,VL)模型。相较于此前的 VL 模型,Qwen-VL 除了具备基本的图文识别、描述、问答及对话能力之外,还新增了视觉定位、图像中文字理解等能力。



具体来说,Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出,可用于知识问答、图像标题生成、图像问答、文档问答、细粒度视觉定位等多种场景。比如,一位不懂中文的外国游客到医院看病,不知道怎么去往对应科室,他拍下楼层导览图问 Qwen-VL“骨科在哪层”“耳鼻喉科去哪层”,Qwen-VL 会根据图片信息给出文字回复。



此外,Qwen-VL 还是业界首个支持中文开放域定位的通用模型,可以通过中文开放域语言表达进行检测框标注。开放域视觉定位能力决定了大模型“视力”的精准度,这意味着具备该能力的大模型能在画面中精准地找出想找的事物。比如,输入一张上海外滩的照片,让 Qwen-VL 找出东方明珠,Qwen-VL 能用检测框准确圈出对应建筑。



据了解,Qwen-VL 以 Qwen-7B 为基座语言模型研发,在模型架构上引入视觉编码器,使得模型支持视觉信号输入,并通过设计训练过程,让模型具备对视觉信号的细粒度感知和理解能力。更高分辨率可以提升细粒度的文字识别、文档问答和检测框标注,相比于目前其它开源 LVLM 使用的 224 分辨率,Qwen-VL 是首个开源的 448 分辨率的 LVLM 模型。

 

阿里云通义千问团队算法专家、Qwen-VL 开源模型负责人白金泽在接受 InfoQ 采访时表示,Qwen-VL 模型的训练分为三个阶段:

 

  • 在预训练阶段,团队主要利用大规模、弱标注的图像-文本样本对进行训练;

  • 在多任务训练阶段,团队整理了大量高质量多任务的细粒度图文标注数据进行混合训练,并升高了图像的输入分辨率,降低图像缩放引起的信息损失,增强模型对图像细节的感知能力,得到 Qwen-VL 预训练模型;

  • 在指令微调阶段,团队使用合成标注的对话数据进行指令微调,激发模型的指令跟随和对话能力,得到具有交互能力的 Qwen-VL-Chat 对话模型。

 

白金泽表示,Qwen-VL 模型的研发难点主要体现在数据、训练、框架三个层面。“数据方面,多模态的数据整理和清洗是个难点,有效的数据清洗可以提高训练效率以及提升最终收敛后的效果。训练方面,在多模态大模型的训练中,一般认为大 batch 和较大学习率可以提升训练收敛效率和最终结果,但其训练过程可能更加不稳定。我们通过一些训练技巧有效提升了训练稳定性,具体细节将在相关论文中公布。框架方面,目前多模态大模型的并行训练框架支持并不完善,我们对多模态大模型的 3D 并行技术进行了优化,可稳定训练更大规模的多模态模型。”

 

除了 Qwen-VL,本次阿里云还开源了 Qwen-VL-Chat。Qwen-VL-Chat 是在 Qwen-VL 的基础上,使用对齐机制打造的基于大语言模型的视觉 AI 助手,可让开发者快速搭建具备多模态能力的对话应用。

 

白金泽补充说,团队主要通过两类方式评估了多模态大模型的效果。其一是使用标准基准数据集来评测每个多模态子任务的效果。例如评测图片描述(Image Captioning)、图片问答(Visual Question Answering, VQA)、文档问答(Document VQA)、图表问答(Chart VQA)、少样本问答(Few-shot VQA)、参照物标注(Referring Expression Comprehension)等。其二是使用人工或借助 GPT-4 打分来评测多模态大模型的整体对话能力和对齐水平。通义千问团队构建了一套基于 GPT-4 打分机制的基准“试金石”( TouchStone),总计涵盖 300+张图片、800+ 道题目、27 个题目类别。

 

在四大类多模态任务(Zero-shot Caption/VQA/DocVQA/Grounding)的标准英文测评中,Qwen-VL 取得了同等尺寸开源 LVLM 的最好效果。为了测试模型的多模态对话能力,通义千问团队构建了一套基于 GPT-4 打分机制的测试集“试金石”,对 Qwen-VL-Chat 及其他模型进行对比测试,Qwen-VL-Chat 在中英文的对齐评测中均取得了开源 LVLM 最好结果。

 


目前,Qwen-VL 及其视觉 AI 助手 Qwen-VL-Chat 均已上线 ModelScope 魔搭社区,开源、免费、可商用。用户可从魔搭社区直接下载模型,也可通过阿里云灵积平台访问调用 Qwen-VL 和 Qwen-VL-Chat,阿里云为用户提供包括模型训练、推理、部署、精调等在内的全方位服务。

大模型发展的下一站:多模态大模型

 

多模态大模型是指能够理解文字、图像、视频、音频等多种模态信息的大模型,与仅能理解单一文本模态的语言模型相比,多模态大模型的优势就在于可以充分利用语言模型的指令理解能力,来做图像、语音、视频等各种模态中的开放域任务,从而具备处理不同模态信息的通用能力。而单一模态大模型的任务形式通常都是预先定义好的,比如图像/视频/语音分类任务,需要提前知道这些类别,然后针对性的找训练数据去训练模型。

 

有观点认为,多模态是预训练大模型最重要的技术演进方向之一

 

业界普遍认为,从单一感官的、仅支持文本输入的语言模型,到“五官全开”的,支持文本、图像、音频等多种信息输入的多模态模型,蕴含着大模型智能跃升的巨大可能。多模态能够提升大模型对世界的理解程度,充分拓展大模型的使用场景。比如,以 GPT-4、PaLM-E 为代表的一批模型,通过赋予大语言模型感知、理解视觉信号的能力,展现出大规模视觉语言模型在解决以视觉为中心的实际问题的前景,并显示出进一步拓展到具身智能、通向通用人工智能的广阔前景。

 

其中,视觉作为人类的第一感官能力,也是研究者首先希望赋予大模型的多模态能力。因此,继此前推出 M6、OFA 系列多模态模型之后,阿里云通义千问团队又开源了基于 Qwen-7B 的大规模视觉语言模型 Qwen-VL。

 

不过,多模态大模型的开发并非易事,白金泽表示,多模态大模型的开发难度包括但不限于以下几点:

 

  • 模态间表征差异大:大规模纯语言模型的输入输出一般是离散表征,而图像、语音等内容通常是连续表征,其模态间的信息密度、表征空间、输入输出方式等都存在巨大差异,这导致了设计的复杂性。

  • 多模态大模型收敛不稳定:由于模态间表征差异大、各模态网络异构等因素,相比纯文本大模型,多模态大模型的训练具有更多的挑战,更有可能出现训练不稳定的情况。

  • 缺乏稳定开源框架支持:目前常见的开源大模型训练框架,都只对纯语言模型的训练效率进行了极致的优化。为了处理多模态输入输出,多模态模型通常有非对称的网络结构,导致无法直接用常见开源训练框架扩展到超大参数量。通义千问团队对多模态的并行训练框架进行了多重优化,可稳定训练更大规模的多模态模型。

 

“多模态是我们很看好的技术方向,这个领域还有很多技术难题有待解决,未来我们也会持续研究。就 Qwen-VL 来说,接下来的工作包括支持更高分辨率的图像输入,无监督地从图像中学习更多的世界知识,扩展更多模态,加深对多模态数据的理解,等等。”白金泽说道。

 

开源地址:

ModelScope 魔搭社区:

Qwen-VL    https://modelscope.cn/models/qwen/Qwen-VL/summary

Qwen-VL-Chat    https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary

模型体验:https://modelscope.cn/studios/qwen/Qwen-VL-Chat-Demo/summary

HuggingFace: 

Qwen-VL   https://huggingface.co/Qwen/Qwen-VL

Qwen-VL-Chat   https://huggingface.co/Qwen/Qwen-VL-Chat

GitHub:

https://github.com/QwenLM/Qwen-VL

技术论文地址:

https://arxiv.org/abs/2308.12966

2023-08-25 14:1512306

评论 8 条评论

发布
用户头像
3232332323
2023-08-29 19:46 · 广东
回复
用户头像
6666
2023-08-29 19:45 · 广东
回复
12334
2023-08-29 19:45 · 广东
回复
211222112
2023-08-29 19:46 · 广东
回复
2112122121
2023-08-29 19:46 · 广东
回复
查看更多回复
用户头像
1111
2023-08-29 19:45 · 广东
回复
没有更多了
发现更多内容

Karmada大规模测试报告发布:突破100倍集群规模

华为云开发者联盟

云计算 云原生 华为云 企业号十月 PK 榜

【kafka思考】最小成本的扩缩容副本设计方案

石臻臻的杂货铺

kafka 11月月更

探究多线程和异步

C++后台开发

多线程 后端开发 异步 linux开发 C++开发

什么是入侵检测系统?有哪些分类?

wljslmz

网络安全 11月月更 入侵检测 IDS

5款宝藏办公软件,高质量打工人必备!

淋雨

OCR 办公软件 IDM

最佳实践|用腾讯云AI图像能力实现AI作画

牵着蜗牛去散步

腾讯云 腾讯 AI

RocketMQ 在同程旅行的落地实践

Apache RocketMQ

消息队列 Apache RocketMQ

如何解决产品知识培训问题?

Baklib

腾讯蓝鲸 API 网关如何借助 APISIX 实现产品升级与业务完善

API7.ai 技术团队

云原生 API网关 APISIX 客户案例

MSE 结合 Dragonwell,让 Java Agent 更好用

阿里巴巴云原生

阿里云 微服务 云原生

快速实现无人车远程控制开发——实践类

阿里云AIoT

阿里云 物联网 远程控制

“工程化”对于大型数据平台而言,意味着什么?新一届StartDT Hackathon来了

奇点云

数据平台 奇点云

管控内部威胁,数据如何安全使用?

极盾科技

数据安全

深圳区块链DAPP程序开发未来发展简介

W13902449729

dapp开发

大咖分享 | 如何构建 Alluxio 审计日志分析系统

Alluxio

分布式 Alluxio 大数据 开源 数据编排 审计日志

Hexo框架+Github 搭建免费静态博客教程(一)

程序员余白

Hexo Github' 博客搭建 11月月更

区块链DAPP开发成本差别如此之大?深圳区块链公司告诉你

W13902449729

dapp dapp开发 区块链开发

【网易云信】网易云信 toB 质量保障体系实践

网易智企

质量保障 PaaS平台

记一次多个Java Agent同时使用的类增强冲突问题及分析

华为云开发者联盟

开发 华为云 企业号十月 PK 榜

Java面试题解析:如何使用ReentrantLock的条件变量,让多个线程顺序执行?

千锋IT教育

钉钉全栈化实践总结-前端篇

阿里技术

前端 钉钉 全栈

华为阅读年度会员4折,万元好礼抢先看

叶落便知秋

无脚本自动化测试

FunTester

鱼传科技:函数计算,只要用上就会觉得香

阿里巴巴云原生

阿里云 云原生 函数计算

复杂A/B实验如何设计?火山引擎DataTester帮你落地!

字节跳动数据平台

大数据 数据 火山引擎 A/B测试

网易云信 toB 质量保障体系实践

网易云信

质量保障 PaaS平台

文档管理系统平台:实现文档管理现代化

Baklib

Hexo+Github搭建个人博客教程(二)

程序员余白

Hexo 博客搭建 11月月更

云原生时代数据库技术趋势与场景选型

OceanBase 数据库

butterfly美化日记(一)

程序员余白

Hexo butterfly 博客配置 11月月更

月日均AUM提升40倍!看这家银行如何做好网金客群分层经营?

索信达控股

科技 客户分群 网金客群

通义千问能看图了!阿里云开源视觉语言大模型Qwen-VL ,支持图文双模态输入_阿里巴巴_凌敏_InfoQ精选文章