写点什么

25 年软件开发经验老司机告诉你:如何用生成式 AI 做项目管理!

Ken Judy

  • 2024-07-10
    北京
  • 本文字数:2893 字

    阅读完需:约 9 分钟

大小:1.41M时长:08:11
25 年软件开发经验老司机告诉你:如何用生成式 AI 做项目管理!

我有 25 年软件开发和领导团队的经验。今年,我重新回到产品和编程相关的工作上,恰逢生成式 AI 助手(如 Claude3、ChatGPT、Llama2 和 MistralAI 等大语言模型)蓬勃发展。它们的出现对我来说非常有价值。


生成式 AI 助手帮助经验丰富的专业人士发挥他们的优势,他们描述他们希望 LLM 可以完成的任务并对结果进行批判性评估。这些工具使我们能够迅速跨越领域语言的鸿沟,将大型重复性任务变成了适合人类完成的有趣的任务。如果使用得当,它们可以从根本上促进人与人之间的互动。


在本文中,我将重点讨论三项这样的活动,以及 AI 助手如何帮助我更好地利用人们的时间,并与他们一起更快地取得成果:


  • 学习和发现;

  • 阐明和理解需求;

  • 与利益相关者保持一致。


学习和发现


开发软件需要快速掌握很多文本内容:对话记录、手册、规范、问题追踪和代码,然后从这些上下文中综合和传达见解。


我充分利用文档协作工具内置的 AI 助手来克服领域特定语言方面的障碍:技术、行业或监管。


在这个例子中,我使用了一个基于大模型(如 ChatGPT 4 或 Claude 3 Opus)的 LLM 聊天工具,它帮助我从一组客户故障工单中提取主题。我这样做是为了了解客户的痛点以及公司在解决这些问题时所面临的挑战。我导出了一份包含 150 个工单摘要的清单,并将其附加到 LLM 聊天中。



在聊天中使用了大约 30 个提示词,我可以从中提取问题类型,按类型总结和分组问题,并将它们与对应用程序流的理解结合起来。据此,我构建了一个顺序图,并确定了客户在该顺序中遇到问题的位置。


我知道 AI 助手是有缺陷的,它会提供不完整的信息,总是想方设法遵循我的提示,并且可能会撒谎。因此,出于责任方面的考虑,我会向专家寻求验证。我会与工程师一起评审顺序图,并征求他们对我的假设和关注点的反馈。


这项工作在半天内就完成了,而如果自己从源文档中吸收并得出见解则需要几天时间。将这项工作带到团队中意味着他们可以专注于澄清和纠正,而不是重复之前的对话。


这项看似枯燥、单调的工作变成了一场对话,文字立即出现在页面上,帮我获得见解。


阐明和理解需求


我作为产品负责人加入了一个活跃的项目,发现现有的待办事项清单为团队圈定了范围,但没有提供优先级或为每个特性提供明确的业务价值描述,因此没有足够的信息来决定如何实现它们。


相反,工程师们基于由非开发人员撰写的产品需求定义(PRD)展开工作,这是一个相当常见的情况。当工程师们接受了任务而没有业务目标时,他们很难充分利用他们创造性解决问题的技能和经验,在时间和资源有限的情况下设计出最有效、可维护和可扩展的解决方案。


结果是工程团队需要重新审视和反思,而这在利益相关者看来是一种时间浪费。利益相关者希望工程师们继续进行他们的工作,而这对他们来说感觉既无力又冒险。


这个问题在于信息传达模糊不清,他们需要更多的信息。如果能够从现有文档中提取相关的上下文信息,你就可以将其从一个领域翻译成另一个领域的语言,而弥合这一差距正是生成式 AI 发挥作用的地方。


我使用 Notion 将 PRD 转化成一个临时的工作待办事项清单。在这个例子中,我将 10 页的 PRD PDF 文档导入到一个 Notion 文档中,然后开始提问:



LLM 从 PRD 中提取工程团队所需的工作描述,并用更符合他们需求的语言来表达。我的提示词引导 LLM 需要提出和详细说明哪些主题。


因为 LLM 已经基于公开可用的用户故事数据进行了训练,所以它知道如何生成看起来和听起来像是一个完整的故事的内容。这些内容可能包含虚构的东西(它会用看起来合理但不真实的东西来填补空白)。我对这些故事进行评审,并根据需要做出修改。最重要的是,我与利益相关者和工程团队一起评审这些故事,并根据他们认为合适的情况做出修正。


因此,这并没有取代人工流程,但它从利益相关者的角度创建文档,并使用 LLM 快速将其翻译成工程团队可理解的东西。然后,与双方进行核实为我节省了数小时的时间。利益相关者可以看到他们的 PRD 被用到了,而工程师们也可以理解他们需要构建什么。


即使没有 AI 助手,我也可以完成这项工作,因为我有足够的经验。但使用 LLM 加快了这一过程,我可以专注于批判性思维和问题,可以专注于有趣的细节。


与利益相关者保持一致


我仍然手写会议笔记,这有助于我集中注意力,并提高我的回忆能力。我甚至会用我喜欢的钢笔,因为那很有趣。不过我也会使用自动转录和摘要功能,无论是视频会议内置的,还是第三方提供的视频会议服务,并让所有参会者知道会议内容正在被记录。我目前更喜欢这些第三方解决方案。


在必要的情况下,我会使用摘要功能,根据我们的待办事项和笔记创建状态更新草稿。像 Notion 这样的文档管理平台内置的 AI 助手将摘要功能作为一个菜单选项,而通用的 AI 聊天工具可以根据提示词生成摘要。


我会重写关键点,然后发给团队和项目利益相关者。它们可以作为我们面对面评审的纲要。通过使用 AI 助手,花在这项工作上的时间被缩短到了 30 分钟,我因此能够专注于获取见解,而不是重复性的摘要工作。


负责任地使用 AI 技术


无论何时何地,使用 AI 助手都不会减少个人对其工作成果需要承担的责任和义务。


作为专业人士,我们必须考虑暴露给 LLM 的内容的隐私性或业务敏感性。我们需要留意 LLM 服务的使用条款和隐私政策。如果可能,选择不被用于训练目的信息共享,在必要时可以使用不会泄露信息的本地模型或保持信息在安全范围内的云服务。


要注意这种技术的功耗、计算时间和成本。作为个人和组织成员,尽量减少不必要的计算。例如,使用低保真度或本地模型。如果可以通过附带文件或检索增强生成(RAG)调用预训练模型,就不要进行昂贵的微调。


使用 AI 来改善人类的生活质量和提高生产力,而不是要取代他们。


例如,我构建了我的第一个 RAG 应用程序来解决一个团队的业务问题。这个团队并没有要求使用 AI,他们是一个支持团队,有一个非常有经验的负责人和两个新成员负责提供支持服务。RAG 成为解决方案的一部分,让这个团队能够从现有资源中获取答案,而无需去寻找它们,或者像通常那样向领导咨询。这让负责人能够专注于解决客户问题,并帮助回答团队其他成员提出的新问题。在我向负责人交付这个工具时,他非常高兴。这个工具还提供了一种编辑和保存答案到规范操作手册的方法。我们希望它能够成为一个活文档,可以记录对常见的客户痛点问题的响应。


如果你在用机器生成内容帮你编写代码和设计文档,要让别人知道,让其他人能够对这些内容的使用、准确性和出处进行监督。


结    论


对于有经验的软件专业人士来说是,如果使用得当,生成式 AI 是一项巨大的资产。它可以帮助我们捕捉、总结和查询大量内容,并迅速将其从一个视角和领域特定术语翻译成另一个。这样可以减少单调的重复工作和返工。我非常依赖它们来加速上下文学习、减少单调工作,并提高输出成果。这有助于我为利益相关者和团队提供支持。它减少了软件开发生命周期中不同参与者之间的摩擦,并增加了我从工作中获得的乐趣。


说明:在本文中,我在示例中使用了 LLM。我还使用 LLM 帮我列出写作要点,但我没有使用 LLM 撰写文章内容。


查看英文原文


https://www.infoq.com/articles/generative-ai-software-project-management/


声明:本文由 InfoQ 翻译,未经许可禁止转载。

2024-07-10 10:004864

评论

发布
暂无评论
发现更多内容

NocoBase 与 NocoDB:开源无代码工具深度对比

NocoBase

开源 低代码 无代码开发 低代码开发 无代码

mcgs笔记 设备窗口 查看子设备的参数配置说明

万里无云万里天

自动化 HMI mcgs

mcgs笔记 新建工程与模拟运行

万里无云万里天

自动化 HMI mcgs

远航汽车远勤山:品质技术服务放首位 扎根新能源汽车赛道持续远航

Geek_2d6073

How Can Unity+腾讯云开发=微信小游戏?

蛋先生DX

腾讯云 Unity 数据模型 云开发 微信小游戏

防止电脑休眠软件Lungo for Mac

Mac相关知识分享

火山引擎VeDI核心产品DataTester再进化,A/B大模型应用评测功能上线

字节跳动数据平台

大数据 A/B 测试 对比实验 数字化增长

西部数据正式推出获PS5™官方授权的8TB超大容量SSD

Geek_2d6073

网站下载工具SiteSucker Pro for Mac

Mac相关知识分享

襄阳等保测评机构有哪些?在哪里?

行云管家

等保 等保测评

Percona Toolkit 神器全攻略(性能类)

GreatSQL

三国策略游戏下载:三国志11威力加强版 (Win&Mac)版下载

你的猪会飞吗

三国志11威力加强版 Mac游戏下载 mac破解软件下载

pdf转换及ocr识别软件PDFify for mac

Mac相关知识分享

音频录制软件Audio Hijack for Mac

Mac相关知识分享

音频录制软件

软件测试 | 手工转测试开发轻松实现薪资 50%涨幅的逆袭之路

测试人

软件测试

Comparison of QCN9274 and QCN6274 as Wi-Fi 7 Network Card Chips

wifi6-yiyi

WiFi7

mcgs笔记 构成工程的五个部分

万里无云万里天

自动化 HMI mcgs

LeetCode:240. 搜索二维矩阵 II,直接查找,详细注释

Lee Chen

强化安全防线:融合反射API与代码注入防护的先进策略

代码忍者

API 测试 pinduoduo API

🌍 "独立开发者出海技术栈和工具" 现已上线!

沉浸式趣谈

独立开发者 工具 技术栈 出海 工具站

天猫商品详情数据接口:利用接口工具获取数据

tbapi

天猫API接口 天猫商品详情接口

超级驾趣学院 长安马自达MAZDA EZ-6驾驭全场景出行

Geek_2d6073

mcgs笔记 工具箱 元件库(四种风格)展示

万里无云万里天

自动化 HMI mcgs

动物目标检测——基于YOLOv5和树莓派4B平台

芯动大师

人工智能 机器学习 AIGC

TDengine 签约前晨汽车,解锁智能出行的无限潜力

TDengine

数据库 tdengine 时序数据库

阿里云 EMR StarRocks 在七猫的应用和实践

阿里云大数据AI技术

云计算 大数据 阿里云 EMR

NPU 与 GPU 相比,有什么差别?| 技术速览

Baihai IDP

程序员 AI gpu 企业 9 月 PK 榜 NPU

mcgs笔记 构件 查看帮助文档

万里无云万里天

自动化 HMI mcgs

交换机是什么?云管理平台可以管理交换吗?

行云管家

云计算 云服务 交换机 云管理

【黄金圆环】在研发领域的实践分享

京东科技开发者

mcgs笔记 设备窗口 添加父设备与子设备

万里无云万里天

自动化 HMI mcgs

25 年软件开发经验老司机告诉你:如何用生成式 AI 做项目管理!_软件工程_InfoQ精选文章