2025 AI基础设施风向标,不看必后悔!#AI基础设施峰会 了解详情
写点什么

AI 加持的 mPaaS 如何打造“最懂用户”的 App

  • 2019-08-27
  • 本文字数:3298 字

    阅读完需:约 11 分钟

AI加持的mPaaS如何打造“最懂用户”的App

摘要: 阿里云峰会于 2019 年 3 月 21 日北京如期举办,蚂蚁金服产品服务化技术专家付海涛在《金融专场》分会场做了主题为《新一代移动研发平台 mPaaS 智能化之路》的精彩分享。



付海涛 蚂蚁金服产品服务化技术专家


本次的分享主要围绕以下内容展开:


  • 移动开发平台 mPaaS 发展历程

  • 移动开发平台 mPaaS 3.0 的产品体系

  • 阿里巴巴金融业务的进化

  • mPaaS 一体化移动智能场景

一、移动开发平台 mPaaS 的发展历程


2016 年 12 月,mPaaS 发布了 1.0 版本正式对外,1.0 主要是想要延续支付宝的金融属性,服务金融行业。因为我们相信作为同一类别的公司,支付宝已经做过金融行业都要走的路,相应的经验都可以被复制的。当时 mPaaS 团队跟很多金融机构做了深入沟通,我们发现大部分机构已经研发了自有 App,但难点并不在于 App 研发,而是如何解决 App 性能问题,提高用户体验。所以 mPaaS 1.0 优先开放支付宝的底层开发框架、UI 库、消息推送、网关服务以及移动分析能力,并以组件化的方式提供服务,让用户可以自行挑选适合自己需求的组件,像搭积木一样快速构建 App 基础架构和通用能力。


随着逐步深入金融行业,我们发现一些走在前列的金融机构业务逐渐成熟,迈入数字化转型阶段,希望对客户进行精细化运营。期间重庆农商行提出了“智慧银行”概念,重点建设数据采集,分析平台。同时由于互联网金融的兴起,金融机构在产品研发、发布更新的节奏越来越像互联网公司,希望能够具备快速扩展更新、应对突发事件进行动态化更新的能力。因此 mPaaS 2.0 逐步开放发布平台、热修复、离线包、数据同步、自定义分析等能力,更深入地改变企业移动开发的模式,助力企业做数字化转型,打造动态化超级 App。


随着时间推移,金融机构对用户有了更深刻的理解,同时对技术提出了更高的要求。为了更有效地利用数据,提高运营的 ROI,App 需要向智能化方向发展。另外,小程序作为 2018 年技术圈的热点,同样引起了金融行业的重视,金融公司普遍选择小程序作为抢占市场的利器。因此,蚂蚁金服将小程序框架抽离出来,进行产品化输出,金融机构可以基于此构建自己的 App 生态。

二、移动开发平台 mPaaS 3.0 的产品体系


三年的深耕细作,mPaaS 不仅积累了数百家付费用户,同时也极大程度地丰富了产品体系。mPaaS 产品体系主要分为三层:


首先,是动态灵活的前端能力。 目前 mPaaS 能够提供 Native、H5、支付宝小程序三大开发框架;100+ 的 UI 控件;以及包括扫码,本地缓存,客户端埋点等 20+ 功能性 SDK,可以让开发者快速接入搭建 App 所需要的基础能力。


其次,是坚实的移动中台能力。 除了客户端开发之外,mPaaS 还提供了移动中台中台能力,可以实现对 App 的整个生命周期的管理,包括 App 研发、测试、发布、分析、运营在内的各个环节。


最后,是稳定的后台连接能力。 mPaaS 为客户提供了移动网关和大文件通道来服务不同的场景,为用户开发 APP 提供了一个高稳定、高可靠以及高效率的后台连接服务能力。

三、阿里巴巴金融业务的进化


与阿里巴巴金融业务的发展历程相似,mPaaS 1.0 主要帮助金融级 App 提高兼容性和稳定性,强调服务可用。接下来,mPaaS 2.0 提倡精细化运营,用数据管理服务,在系统内部建立数字化体系,实现大数据平台。那么如何利用数据做到精细化、智能化运营,如何针对不同用户完成个性化的决策与推荐,mPaaS 3.0 进而实现智能化平台以支持决策。“智能化升级”是 mPaaS 历经两个版本迭代与升级后的自然过渡,是市场发展、客户需求驱动的结果。


数据接入+分析决策引擎+mPaaS 场景


关于智能化平台,mPaaS 主要着力点在于构建了“数据接入+分析决策引擎+mPaaS 场景”的一体化移动 AI 方案。蚂蚁金服内部最核心的 AI 技术,同时是内部构建“千人千面”所应用的技术,被剥离出来形成了决策引擎。在“运营”和“体验”两个方向下,结合 mPaaS 完善的业务应用场景,输出移动分析、智能投放、智能预测、OCR 识别等一体化垂直解决方案,让用户能够真正享受到可落地应用的人工智能服务。



数据:自带数据、标准格式


mPaaS 2.0 中已经为数据化转型实现了一整套数据采集机制,包括机型环境、用户行为、闪退卡顿、组件使用情况以及自定义事件,基于这些数据就可以对智能预测模型进行预测。


四、mPaaS 一体化移动智能场景

mPaaS 提供了从 App 研发,测试,发布,分析,运营全生命周期的管理,天然就提供了很多智能化的应用场景。


运用蚂蚁金服沉淀的 AI 技术和 mPaaS 采集的业务数据,我们可以根据用户的行为动态地创建人群归类,这就是智能预测产品。智能预测还可以和灰度发布、消息推送、智能投放等产品结合,针对有相同行为的人群提供定制化运营活动,提升留存、促进转化。



智能预测技术模型



预测一个行为会不会发生本质上是一个监督学习模型。我们抽取最近 28 天的数据,取最近的一周数据打标,给用户分类,其余的 21 天数据用于特征序列的生成,然后把所有的数据给到机器学习平台,进行模型训练。对即将到来的一周时间内的用户行为进行预测,形成人群。


在训练过程中,召回率、特异性、准确率等关键指标将被用作评估模型预测精准度。当然,不同场景下的预测模型风险承受能力不同,智能预测内置了“低置信度、中置信度及高置信度”三个级别。置信度越高,误判率相对越低,但模型能够圈定的用户量也将越少。


对于“理财推荐”场景,我们可以选择“低置信度”作为标准进行圈人,因为即使用户没有意愿购买理财产品,但营销信息的推送也是可被接受的。相反地,我们要面向即使流失的用户推送优惠券来提升留存率,那么“高置信度”是最合适的选择。


智能预测内置了两项预测任务,一项是“7 日内用户持续活跃”,另一项是“7 日内用户会流失”。同时,产品支持“自定义事件”设定,我们可以结合灰度发布为不同人群定制不一样的 App 体验,也可以结合消息推送进行针对性的营销推送。即使我们不确定哪种营销策略是最优选择,结合 ABTest 可以针对同一类人群进行深度测试。


ABTest 技术模型



通过 ABTest,我们可以知道用户喜欢什么、不喜欢什么,从而为 App 的体验优化提供更多数据支持。如图所示,支付宝面向不同用户提供不同的界面样式,从而帮助产品团队更直接地找到最优的交互方案。



ABTest 不仅仅可以为客户端体验优化提供支持,同时可以参与服务端算法、策略实验。和移动网关服务(MGS)结合,ABTest 能够方便地支持后端算法、策略实验;与移动分析服务(MAS)结合,ABTest 能够基于用户属性、行为的数据结果帮助客户制定正确的决策。


智能投放技术模型



智能投放产品能够按照用户属性、实际需求真正做到千人千面,针对性地投放广告。智能素材、智能圈人、智能推荐以及智能监控是目前支付宝内成熟应用的智能化模块:


  • 智能素材模块通过智能算法对文案、图片进行组装并渲染给用户,解决了投放内容单一、缺乏策略的弊端;

  • 智能圈人模块通过对特定事件进行模型预测以及种子用户画像进行目标人群圈定,解决了目标人群归类难的问题;

  • 智能推荐模块能够对内容进行排序,同时控制广告展示,控制广告展示的疲劳度;针对银行等金融业务特点,LR,MAB,GBDT 等常用的推荐算法已集成到引擎内部,结合 mPaaS 客户端 SDK 的统一数据采集、标准处理流程,客户能够做到在没有算法工程师的情况下实现基本的营销内容智能推荐;

  • 智能监控模块能够结合数据分析提供预警,以降低投放活动的运行风险。


同时,AI 的轻量化是蚂蚁金服不断追求的目标。AR 红包是近年春节流行的游戏, 其 70% 的扫描和识别任务都在客户端进行,只有不到 30% 的任务在服务端进行。主要是因为,蚂蚁可以通过后台的训练模型生成客户端识别模块,直接在客户端就可以完成大部分的识别。


基于 AR 红包的具体实践,mPaaS 推出了轻量化的客户端智能化解决方案。mPaaS 中的移动分析服务(MAS)提供客户端数据采集能力,底层自带的智能化平台包含与 MAS 配套的 AI 模型和决策能力,因此 mPaaS 基于本身的数据便可以展开精确的预测,并针对可能发生同类行为的群体进行灰度发布、消息推送、智能营销、ABTest 等运营手段,让智能化能力可以快速落地,无需任何系统对接和研发工作,做到真正开箱即用。


本文转载自公众号蚂蚁金服科技(ID:Ant-Techfin)。


原文链接:


https://mp.weixin.qq.com/s/uA6y5sFGX4xqaLabHFSSHg


2019-08-27 12:231757
用户头像

发布了 150 篇内容, 共 36.1 次阅读, 收获喜欢 38 次。

关注

评论

发布
暂无评论
发现更多内容

TDengine 签约深圳综合粒子,赋能粒子研究新突破

TDengine

数据库 tdengine 时序数据库

星闪与Wi-Fi 7一相逢,便点亮智家无数

脑极体

AI

如何通过ETLCloud做企业级数据集成

RestCloud

数据分析 ETL 数据集成 企业数据集成

ERP系统实施的难点不是系统本身,而是企业的人与管理

积木链小链

企业管理 ERP 中小企业

法行宝爱企查AI形象上线,AI版“职场搭子”度律度秘替你打工

科技热闻

揭秘1688阿里巴巴API接口:解锁商品评论与描述详情图的深度探索之旅

代码忍者

API 接口 pinduoduo API

集团总部与分公司组网:选择MPLS还是SD-WAN?

Ogcloud

SD-WAN 企业组网 企业网络 SD-WAN组网 SD-WAN服务商

《可观测性体系建设100问》第二章—可观测性技术应用正式发布!实战应用,深化理解

博睿数据

华中科技大学鲲鹏昇腾科教创新孵化中心揭牌,产学研合作再结硕果

极客天地

TiDB 关联子查询及半连接的优化实践

PingCAP

数据库 #TiDB

模型输出可保存为数据集、支持配置社区活动作为课程作业|ModelWhale 版本更新

ModelWhale

Python 人工智能 数据分析 元数据

TDengine vs InfluxDB:谁的“流式计算”功能是真的?

TDengine

数据库 tdengine 时序数据库

进军东南亚!Coremail泰国分公司启航

科技热闻

从微软 SSAS 到国产替代,这家企业终于松了一口气

Kyligence

阿里巴巴热卖商品推荐API接口的获取与应用

科普小能手

阿里巴巴 电商 API API 接口 阿里巴巴数据采集

面基超快乐!和鲸社区亮相 PyCon China 2024 社区展

ModelWhale

Python 数据挖掘 机器学习 深度学习 数据库

实战丨证券 HTAP 混合业务场景的难点问题应对

PingCAP

数据库 #TiDB

工业 5.0 时代的数字孪生:迈向高效和可持续的智能工厂

Altair RapidMiner

工业 制造业 数字孪生 仿真 altair

活动回顾丨云原生开源开发者沙龙·杭州站回放 & PPT 下载

阿里巴巴云原生

阿里云 云原生

夜莺短信告警教程

巴辉特

夜莺监控 夜莺Nightingale 夜莺短信告警

InfluxDB vs TDengine :2025 年了,谁家用的数据库还不能高效读缓存?

TDengine

数据库 tdengine 时序数据库

MPC2024明道云伙伴大会圆满结束

明道云

项目经理如何向客户更好地汇报项目情况

Hi-CodeCaptain

项目管理 软件测试 精准测试 代码覆盖率 质量内建

用例图如何在线制作?10个用例图模板案例推荐!

职场工具箱

效率工具 UML 用例图 在线白板 绘图软件

TikTok直播网络要求是什么?

Ogcloud

TikTok tiktok直播 tiktok直播专线 tiktok直播网络 tiktok直播加速

AI加持的mPaaS如何打造“最懂用户”的App_AI&大模型_Geek_cb7643_InfoQ精选文章