写点什么

轻松上手 UAI-Train,拍拍贷人脸识别算法优化效率提升 85.7%

  • 2019-11-11
  • 本文字数:1788 字

    阅读完需:约 6 分钟

轻松上手UAI-Train,拍拍贷人脸识别算法优化效率提升85.7%

“UAI-Train 平台可以让我们方便地在短时内使用大量的 GPU 资源,用较低的成本训练海量的数据集,提高算法模型迭代优化的效率。”

— 拍拍贷算法研究员 朱运

UAI-Train 是什么

UAI-Train 是面向 AI 训练任务的大规模分布式计算平台,基于 P40、V100 等 GPU 云主机集群,通过分布式扩展,最高可实现 192TFlops 的单精度计算能力。提供一站式训练任务托管服务,可自动化解决计算节点调度、训练环境准备、数据上传下载以及任务容灾等问题,并支持按需收费、成本可控,无需担心资源浪费。在视频图像识别、自然语言处理、语音处理等领域均已有诸多实践。

拍拍贷接入 UAI-Train 的效果

通过使用分布式 GPU 训练平台,700W 人脸数据的模型训练所需时长可从原先的一周缩短至一天,整体算法优化效率提升 85.7%,相应的迭代频率也提高数倍,为更深层次的模型结构试验提供了可能。同时 UAI-Train 平台备有大量 GPU 资源,拍拍贷的算法工程师可以同时探索多种算法模型结构,极大缩短初期算法结构探索的时间。最重要的是 UAI-Train 平台具备按需收费的特性,拍拍贷人脸识别算法的 GPU 资源成本可由原先的上万元/月,下降至数千元/月,GPU 资源的有效利用率也达到了 100%。



表:UAI-Train 与购买 GPU 资源的特性对比

关于拍拍贷

拍拍贷是一家行业领先的金融科技公司,同时也是一家非常注重技术驱动、强调自主研发的高科技公司。一直以来非常重视 AI 技术的探索和应用,涉及到计算机视觉、语音分析和建模、自然语言处理、复杂网络分析等针对特定非结构化数据的领域,并将迁移学习、主动学习、强化学习、多任务学习、在线学习、非监督半监督等各种机器学习算法应用至多种业务场景。尤其是人脸识别、OCR、不良中介识别和欺诈团伙挖掘、智能对话机器人、社交文本挖掘等项目,在实际的业务实践中取得了不俗的效果,极大地提升了风险反欺诈水平和运营效率。

人脸识别

人脸识别是拍拍贷 AI 技术的一个重要研究方向,它通过算法识别人的脸部特征,从而可以做到实时地从图片或者视频流中检测和追踪特定的人。


目前拍拍贷自研人脸识别算法,在 700W 规模多年龄段、多姿态、多表情、多环境的人脸图片上进行训练。通过尝试不同的网络结构,包含 Inception-v3、优化后的 resnet 等,以及多种损失函数,例如 triplet_loss、sphere、cosine、arc_loss 等来优化人脸识别算法,从而提升 1:1 人脸认证、1:N 人脸搜索、N:N 人脸交叉比对、人脸聚类等场景的识别精度,并将此类技术应用于拍拍贷的风险监控、反欺诈等业务,并发挥了重要作用。



图:人脸识别业务场景

面临的问题

算法人员在优化人脸识别算法的过程中发现使用单台 GPU 机器迭代一次算法需要一周左右的时间,效率过低影响研发进度,但是采购更多的 GPU 机器来探索不同算法会导致资源成本线性增长;此外由于算法调优工作涉及诸多研究内容,例如算法效果分析、新算法调研、开发等,实际的资源使用率不高。

接触 UAI-Train

在一次线下技术交流活动中,拍拍贷技术人员了解到 UCloud 提供一种面向人工智能算法训练的 UAI-Train 平台,并支持 GPU 资源的按需租售服务,同时该平台上还可执行多机多卡的分布式训练任务。


为了提升模型训练的效率,充分高效地利用更多的新数据来进一步提高其准确率,拍拍贷抉择后选择尝试 UAI-Train 平台。UCloud AI 团队在 GitHub 上发布了适配 UAI-Train 平台的 Insightface 开发案例,用于协助拍拍贷的算法工程师很方便地将单机的人脸识别算法转化成支持分布式训练的人脸识别算法,并成功在 UAI-Train 平台上进行算法的快速优化。


Insightface 是 GitHub 上一个基于 MXNet 框架的开源人脸识别项目。UCloud 基于 insightface 开发了一整套能支持分布式训练的人脸识别训练和在线推理的案例代码,并发布在GitHub上,其中包括基于 MXNet 框架的代码及开发案例。拍拍贷的工程师基于该案例,结合自身人脸识别算法的实现和数据,一周时间内就完成了开发和调试,并顺利在 UAI-Train 平台上逐步展开人脸识别算法的训练迭代工作。



图:人脸识别算法接入过程


在多次算法优化迭代尝试后,拍拍贷通过利用高维向量表征人脸,余弦距离表达相似度,最终在开源测试集准确率表现为:lfw 99.8%, cfp_fp 97%, agedb_30 98.2% ,实际业务应用中的准确率高达 99%以上,进一步提升了风险监管、反欺诈等业务的效率。


本文转载自公众号 UCloud 技术(ID:ucloud_tech)。


原文链接:


https://mp.weixin.qq.com/s/I1Ts8R4_vHCTB6kOWNo3yQ


2019-11-11 10:39927

评论

发布
暂无评论
发现更多内容

环境变量配置无效?

矩视智能

深度学习 机器视觉

服务器 突然断电有什么危害

Geek_f19a80

轻松理解 Transformers (4) :Decoder 和 Output 部分

Baihai IDP

人工智能 深度学习 AI Transformer 白海科技

玩转 Cgroup 系列之一: Cgroup 的起源、重要性和基本工作原理

小猿姐

Linux 内核 资源管理 Cgroup

大模型训练:提高NLP性能的关键路径

百度开发者中心

nlp 大模型

一起学Elasticsearch系列-Query DSL

Java随想录

Java 大数据 ES

Xmind for Mac(思维导图软件) 24.01中文版

展初云

Mac 思维导图 XMind

CSP直通车“助你成为优秀的专业敏捷教练”| 12月线上面授双周末班

ShineScrum

敏捷教练 专业敏捷教练

Fig Player for Mac(多媒体播放器)

展初云

播放器 Mac软件 Fig Player

玩转 Cgroup 系列之二:使用 CPUShares 管理 Cgroup

小猿姐

Linux Cgroup CPUShares I/O 调度

如何走出自己的第二曲线

老张

职场成长 第二曲线

首发!文心一言插件精品课,共创大模型应用新范式

飞桨PaddlePaddle

插件 文心一言 AI原生应用

利用Prompt工程提升大模型性能

百度开发者中心

深度学习 大模型

数据流图:一篇文章教你如何轻松画出来

职场工具箱

流程图 教程分享 绘图工具

Amazon EC2使用测评

查拉图斯特拉说

服务器 亚马逊云科技 EC2

如何正确执行 DORA 指标

SEAL安全

DevOps 持续部署 DORA 企业号11月PK榜

理事长走进统信软件,深度探讨社区发展规划 | 理事长走进系列

OpenAnolis小助手

开源 AI 操作系统 龙蜥社区 统信软件

普及高质量融资管理举措 ,打造城投国资领先实践,用友Fast by BIP很在“行”

用友BIP

全球司库 国资数智化

文心大模型驱动的代码助手Comate

百度开发者中心

大模型 #人工智能 智能代码助手

普通人为什么要学物理?这个答案最逆天!

博文视点Broadview

聚力未来!云起无垠成为光合组织成员单位

云起无垠

MouseBoost Pro for Mac(右键助手)

展初云

Mac软件 鼠标辅助

用友在ICDAR发表论文,AI实力获国际顶级学术会议认可

用友BIP

人工智能

亚马逊云科技大语言模型加速OCR应用场景发展

归来

人工智能 OCR 大语言模型

软件APP定制开发有那些优势?

Geek_16d138

软件定制 app定制开发

轻松上手UAI-Train,拍拍贷人脸识别算法优化效率提升85.7%_文化 & 方法_UCloud技术_InfoQ精选文章