写点什么

在 Elasticsearch 中存储 Open Distro for Elasticsearch 的 Performance Analyzer 输出

  • 2019-09-29
  • 本文字数:4427 字

    阅读完需:约 15 分钟

在 Elasticsearch 中存储 Open Distro for Elasticsearch 的 Performance Analyzer 输出

Open Distro for Elasticsearch Performance Analyzer 插件显示从 Elasticsearch 集群返回指标的 REST API。要充分利用这些指标,您可以将它们存储在 Elasticsearch 中,并使用 Kibana 对其进行可视化。尽管您可以使用 Open Distro for Elasticsearch 的 PerfTop 来构建可视化效果,但 PerfTop 不会保留数据,这意味着它为轻量级。


在本博文中,我将通过一个代码示例探索 Performance Analyzer 的 API,该代码读取 Performance Analyzer 的指标并将其写入 Elasticsearch。您可能会想知道为什么 Performance Analyzer 还没有这样做(欢迎您发起 Pull Request!)。Performance Analyzer 设计为 Elasticsearch 的轻量级协同进程。如果您的 Elasticsearch 集群有问题,则它可能无法响应请求,并且 Kibana 可能无法正常工作。如果采用示例代码,建议将数据发送到不同的 Open Distro for Elasticsearch 集群以避免出现此问题。


您可以遵循我在 GitHub 社区存储库中发布的示例代码。当您克隆存储库时,代码位于 pa-to-es 文件夹中。有关其他代码示例的信息,请参阅往期博客文章。

代码概述

pa-to-es 文件夹包含三个 Python 文件(需要 Python 版本 3.x)和一个 Elasticsearch 模板,该模板将 @timestamp 字段的类型设置为 date。main.py 是一个应用程序,包含调用 Performance Analyzer 的无限循环,以进行提取指标、解析这些指标并将其发送到 Elasticsearch:


    while 1:        print('Gathering docs')        docs = MetricGatherer().get_all_metrics()        print('Sending docs: ', len(docs))        MetricWriter(get_args()).put_doc_batches(docs)
复制代码


如您所见,main.py 提供 MetricGatherer 和 MetricWriter 两个类别,以与 Elasticsearch 进行通信。MetricGatherer.get_all_metrics() 将遍历 metric_descriptions.py(每个都调用 get_metric())中的运行指标说明。


要获取指标,MetricGatherer 将生成表单的 URL:


http://localhost:9600/_opendistro/_performanceanalyzer/metrics?metrics=&dim=&agg=&nodes=all


(您可以在我们的文档中获取有关 Performance Analyzer API 的更多详细信息。) 指标说明是 namedtuple,提供指标/维度/聚合三元组。发送多个项目的效率会更高,但我发现解析结果要复杂得多,这使得任何性能提升都不那么重要。为了确定指标说明,我生成了指标/维度/聚合的所有可能组合,测试运行说明并将其保留在 metric_descriptions.py 中。比较好的做法是构建可显示有效组合的 API,而不是从静态描述集进行运行(正如我前面提到的,我们欢迎大家发起 Pull Request)。


MetricGatherer 使用 result_parse.ResultParser 解释对 Performance Analyzer 的调用的输出。输出 JSON 的每个节点包含一个元素。在该元素中,它返回 fields 列表,后跟一组 records:


{  "XU9kOXBBQbmFSvkGLv4iGw": {    "timestamp": 1558636900000,     "data": {      "fields":[        {          "name":"ShardID",          "type":"VARCHAR"        },        {          "name":"Latency",          "type":"DOUBLE"        },        {          "name":"CPU_Utilization",          "type":"DOUBLE"        }      ],      "records":[        [          null,          null,          0.016093937677199393        ]      ]    }  }, ...
复制代码


ResultParser 将分离的字段名称和值压缩在一起,生成一个 dict,跳过空值。records 生成器函数使用此 dict 作为其返回的基础,添加来自原始返回正文的时间戳。records 还将节点名称和聚合作为字段添加到 dict 中,以便在 Kibana 中可视化数据。


MetricWriter 关闭循环,同时收集 dict 并将其作为文档写入 Elasticsearch,构建 _bulk 正文,然后通过 POST 请求批量写入 Elasticsearch。编写时,代码为硬连线,以将 _bulk 发送至 https://localhost:9200。实际上,您需要更改输出以转到不同的 Elasticsearch 集群。POST 请求的身份验证为 admin:admin,请确保在更改 Open Distro for Elasticsearch 的密码时对其进行更改。

将模板添加到集群

您可以按如上所述方式运行代码,您将看到数据流入 Open Distro for Elasticsearch 集群。但是,Performance Analyzer 返回的时间戳是长整数,Elasticsearch 会将映射设置为 number,您将无法对索引使用 Kibana 基于时间的函数。我可以截取时间戳或重写时间戳,以便自动检测映射。我选择了设置模板。


以下模板(pa-to-es 文件夹中的 template.json)将 @timestamp 的字段类型设置为 date。在发送任何数据、自动创建索引之前,您需要将此模板发送到 Elasticsearch。(如果您已经运行了 pa-to-es,请不要担心,只需删除它创建的任何索引。) 您可以使用 Kibana 开发人员窗格将模板发送到 Elasticsearch。


导航至 https://localhost:5601。登录、关闭启动画面,然后选择 DevTools 选项卡。单击 Get to work。复制以下文本并粘贴到交互式窗格中,然后单击右侧的三角形。(根据您运行的 Elasticsearch 版本,您可能会收到有关类型删除的警告。您可以忽略此警告。)


POST _template/pa {    "index_patterns": ["pa-*"],    "settings": {        "number_of_shards": 1    },    "mappings": {        "log": {            "properties": {                "@timestamp": {                    "type": "date"                }            }        }    }}
复制代码

监控 Elasticsearch

我运行 esrally,通过 http_logs 跟踪我的 Open Distro for Elasticsearch,还运行 main.py 来收集指标。然后,我使用这些数据构建了一个 Kibana 控制面板,用于监控我的集群。



显示 Open Distro for Elasticsearch Performance Analyzer 插件收集的指标的 Kibana 控制面板

小结

Elasticsearch 文档中存储的指标具有单个指标/维度/聚合组合,让您可以自由地以最精细的粒度构建 Kibana 可视化效果。例如,我的控制面板将 CPU 利用率细化到 Elasticsearch 操作级别、每个节点上的磁盘等待时间,以及每个操作的读写吞吐量。在随后的博文中,我将深入探讨如何使用 Performance Analyzer 数据构建控制面板和其他可视化效果。


作者介绍:


Jon Handler


Jon Handler (@_searchgeek) 是总部位于加利福尼亚州帕罗奥图市的 Amazon Web Services 的首席解决方案架构师。Jon 与 CloudSearch 和 Elasticsearch 团队密切合作,为想要将搜索工作负载迁移到 AWS 云的广大客户提供帮助和指导。在加入 AWS 之前,Jon 作为一名软件开发人员,曾为某个大型电子商务搜索引擎编写代码长达四年。Jon 拥有宾夕法尼亚大学的文学学士学位,以及西北大学计算机科学和人工智能理学硕士和博士学位。


本文转载自 AWS 技术博客


文章链接:


https://amazonaws-china.com/cn/blogs/china/open-distro-for-elasticsearchs-performance-analyzer-kibana/


2019-09-29 16:29934
用户头像

发布了 1856 篇内容, 共 129.5 次阅读, 收获喜欢 81 次。

关注

评论

发布
暂无评论
发现更多内容

StarRocks在中移物联网PGW实时会话业务领域的应用

StarRocks

大数据 数据分析 物联网 IoT OLAP

php 再上热搜!swoole 创始人投出反对票,质疑 php 协程最新提案

薇薇

php 编程 新特性 php扩展

filecoin云算力软件开发|filecoin云算力APP系统开发

系统开发

【实战问题】-- 高并发架构设计以及超领现象解决?

秦怀杂货店

Java 架构 高并发

发布两小时,霸榜GitHub!Spring Boot实战文档

Java 编程 程序员 架构师

一周信创舆情观察(3.8~3.14)

统小信uos

趋势预测:2021年五大流行的编程语言

薇薇

Java c php JavaScript Python PEP

炸裂,IBM系统架构师居然把自己15年Java经验整合成一本小说?

Java架构师迁哥

万象:百度的海量多媒体信息处理系统

百度Geek说

大数据 搜索引擎 百度 后端 #富媒体#

2021年新兴的十大区块链技术趋势

CECBC

数字技术

全凭阿里大牛总结的Java面试笔记,首战成功拿蚂蚁offer

Java架构之路

Java 程序员 架构 面试 编程语言

全球案例 | Infobip :这家估值十亿美元的公司像初创企业一样规模化发展,像大型企业一样标准化

Atlassian

DevOps Agile Atlassian Jira ITSM

声网Agora发布创业支持计划:聚合50+合作伙伴、11项资源扶持创业者

ToB行业头条

声网 Agora

filecoin矿机系统开发|filecoin矿机软件APP开发

系统开发

uni-app跨端开发H5、小程序、IOS、Android(二):开发工具HBuilderX使用技巧

黑马腾云

微信小程序 uni-app App 3月日更 Hbuilderx

告别交通拥堵和数据孤岛,区块链成智慧交通发展新基石

CECBC

交通

以数字人民币为契机 推动人民币国际化进程

CECBC

金融

打卡学习VBA和PYTHON week01

小怪兽

IT蜗壳教学

DCache 分布式存储系统|Set, ZSet 缓存模块的创建与使用

TARS基金会

nosql 缓存 分布式 MySQL 高可用 TARS

filecoin挖矿软件开发|filecoin挖矿APP系统开发

系统开发

霸榜Git!2021年阿里巴巴Java面试权威指南(泰山版)

Java架构之路

Java 程序员 架构 面试 编程语言

直击面试!阿里技术官手码12W字面试小册在Github上爆火

Java架构之路

Java 程序员 架构 面试 编程语言

图解垃圾算法,No,捡垃圾算法

叫练

GC算法 引用计数法 标记清除法

科技进化的终点,与荣耀全场景的起点

脑极体

朱嘉明:比特币开创人类新型财富实验

CECBC

数字货币

霸榜Git!2021年阿里巴巴Java面试权威指南(全彩版)

Java 程序员 面试 架构师

寻找被遗忘的勇气(十八)

Changing Lin

3月日更

epoll源码分析以及在Redis中的实现

Linux服务器开发

redis 后端 epoll web服务器 Linux服务器开发

前端工程化之H5性能优化篇

百度Geek说

百度 大前端 H5

如何评估需求优先级?

石云升

项目管理 28天写作 职场经验 管理经验 3月日更

315曝光的侵犯个人信息行为可以用区块链来规范吗?

CECBC

区块链

在 Elasticsearch 中存储 Open Distro for Elasticsearch 的 Performance Analyzer 输出_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章