写点什么

在 Elasticsearch 中存储 Open Distro for Elasticsearch 的 Performance Analyzer 输出

  • 2019-09-29
  • 本文字数:4427 字

    阅读完需:约 15 分钟

在 Elasticsearch 中存储 Open Distro for Elasticsearch 的 Performance Analyzer 输出

Open Distro for Elasticsearch Performance Analyzer 插件显示从 Elasticsearch 集群返回指标的 REST API。要充分利用这些指标,您可以将它们存储在 Elasticsearch 中,并使用 Kibana 对其进行可视化。尽管您可以使用 Open Distro for Elasticsearch 的 PerfTop 来构建可视化效果,但 PerfTop 不会保留数据,这意味着它为轻量级。


在本博文中,我将通过一个代码示例探索 Performance Analyzer 的 API,该代码读取 Performance Analyzer 的指标并将其写入 Elasticsearch。您可能会想知道为什么 Performance Analyzer 还没有这样做(欢迎您发起 Pull Request!)。Performance Analyzer 设计为 Elasticsearch 的轻量级协同进程。如果您的 Elasticsearch 集群有问题,则它可能无法响应请求,并且 Kibana 可能无法正常工作。如果采用示例代码,建议将数据发送到不同的 Open Distro for Elasticsearch 集群以避免出现此问题。


您可以遵循我在 GitHub 社区存储库中发布的示例代码。当您克隆存储库时,代码位于 pa-to-es 文件夹中。有关其他代码示例的信息,请参阅往期博客文章。

代码概述

pa-to-es 文件夹包含三个 Python 文件(需要 Python 版本 3.x)和一个 Elasticsearch 模板,该模板将 @timestamp 字段的类型设置为 date。main.py 是一个应用程序,包含调用 Performance Analyzer 的无限循环,以进行提取指标、解析这些指标并将其发送到 Elasticsearch:


    while 1:        print('Gathering docs')        docs = MetricGatherer().get_all_metrics()        print('Sending docs: ', len(docs))        MetricWriter(get_args()).put_doc_batches(docs)
复制代码


如您所见,main.py 提供 MetricGatherer 和 MetricWriter 两个类别,以与 Elasticsearch 进行通信。MetricGatherer.get_all_metrics() 将遍历 metric_descriptions.py(每个都调用 get_metric())中的运行指标说明。


要获取指标,MetricGatherer 将生成表单的 URL:


http://localhost:9600/_opendistro/_performanceanalyzer/metrics?metrics=&dim=&agg=&nodes=all


(您可以在我们的文档中获取有关 Performance Analyzer API 的更多详细信息。) 指标说明是 namedtuple,提供指标/维度/聚合三元组。发送多个项目的效率会更高,但我发现解析结果要复杂得多,这使得任何性能提升都不那么重要。为了确定指标说明,我生成了指标/维度/聚合的所有可能组合,测试运行说明并将其保留在 metric_descriptions.py 中。比较好的做法是构建可显示有效组合的 API,而不是从静态描述集进行运行(正如我前面提到的,我们欢迎大家发起 Pull Request)。


MetricGatherer 使用 result_parse.ResultParser 解释对 Performance Analyzer 的调用的输出。输出 JSON 的每个节点包含一个元素。在该元素中,它返回 fields 列表,后跟一组 records:


{  "XU9kOXBBQbmFSvkGLv4iGw": {    "timestamp": 1558636900000,     "data": {      "fields":[        {          "name":"ShardID",          "type":"VARCHAR"        },        {          "name":"Latency",          "type":"DOUBLE"        },        {          "name":"CPU_Utilization",          "type":"DOUBLE"        }      ],      "records":[        [          null,          null,          0.016093937677199393        ]      ]    }  }, ...
复制代码


ResultParser 将分离的字段名称和值压缩在一起,生成一个 dict,跳过空值。records 生成器函数使用此 dict 作为其返回的基础,添加来自原始返回正文的时间戳。records 还将节点名称和聚合作为字段添加到 dict 中,以便在 Kibana 中可视化数据。


MetricWriter 关闭循环,同时收集 dict 并将其作为文档写入 Elasticsearch,构建 _bulk 正文,然后通过 POST 请求批量写入 Elasticsearch。编写时,代码为硬连线,以将 _bulk 发送至 https://localhost:9200。实际上,您需要更改输出以转到不同的 Elasticsearch 集群。POST 请求的身份验证为 admin:admin,请确保在更改 Open Distro for Elasticsearch 的密码时对其进行更改。

将模板添加到集群

您可以按如上所述方式运行代码,您将看到数据流入 Open Distro for Elasticsearch 集群。但是,Performance Analyzer 返回的时间戳是长整数,Elasticsearch 会将映射设置为 number,您将无法对索引使用 Kibana 基于时间的函数。我可以截取时间戳或重写时间戳,以便自动检测映射。我选择了设置模板。


以下模板(pa-to-es 文件夹中的 template.json)将 @timestamp 的字段类型设置为 date。在发送任何数据、自动创建索引之前,您需要将此模板发送到 Elasticsearch。(如果您已经运行了 pa-to-es,请不要担心,只需删除它创建的任何索引。) 您可以使用 Kibana 开发人员窗格将模板发送到 Elasticsearch。


导航至 https://localhost:5601。登录、关闭启动画面,然后选择 DevTools 选项卡。单击 Get to work。复制以下文本并粘贴到交互式窗格中,然后单击右侧的三角形。(根据您运行的 Elasticsearch 版本,您可能会收到有关类型删除的警告。您可以忽略此警告。)


POST _template/pa {    "index_patterns": ["pa-*"],    "settings": {        "number_of_shards": 1    },    "mappings": {        "log": {            "properties": {                "@timestamp": {                    "type": "date"                }            }        }    }}
复制代码

监控 Elasticsearch

我运行 esrally,通过 http_logs 跟踪我的 Open Distro for Elasticsearch,还运行 main.py 来收集指标。然后,我使用这些数据构建了一个 Kibana 控制面板,用于监控我的集群。



显示 Open Distro for Elasticsearch Performance Analyzer 插件收集的指标的 Kibana 控制面板

小结

Elasticsearch 文档中存储的指标具有单个指标/维度/聚合组合,让您可以自由地以最精细的粒度构建 Kibana 可视化效果。例如,我的控制面板将 CPU 利用率细化到 Elasticsearch 操作级别、每个节点上的磁盘等待时间,以及每个操作的读写吞吐量。在随后的博文中,我将深入探讨如何使用 Performance Analyzer 数据构建控制面板和其他可视化效果。


作者介绍:


Jon Handler


Jon Handler (@_searchgeek) 是总部位于加利福尼亚州帕罗奥图市的 Amazon Web Services 的首席解决方案架构师。Jon 与 CloudSearch 和 Elasticsearch 团队密切合作,为想要将搜索工作负载迁移到 AWS 云的广大客户提供帮助和指导。在加入 AWS 之前,Jon 作为一名软件开发人员,曾为某个大型电子商务搜索引擎编写代码长达四年。Jon 拥有宾夕法尼亚大学的文学学士学位,以及西北大学计算机科学和人工智能理学硕士和博士学位。


本文转载自 AWS 技术博客


文章链接:


https://amazonaws-china.com/cn/blogs/china/open-distro-for-elasticsearchs-performance-analyzer-kibana/


2019-09-29 16:29874
用户头像

发布了 1848 篇内容, 共 113.8 次阅读, 收获喜欢 78 次。

关注

评论

发布
暂无评论
发现更多内容

Spark任务等待与运行策略

小舰

4月日更

细说Python Lambda函数的用法,建议收藏!

华为云开发者联盟

Python 函数 匿名 Lambda函数 表达式

五一高铁票难抢?用RPA机器人试试!

华为云开发者联盟

RPA

CTO 说要接入实时音视频 SDK,我到底该批多少预算?

融云 RongCloud

使用gradle插件发布项目到nexus中央仓库

程序那些事

Java maven Gradle 程序那些事

聪明人的训练(十九)

Changing Lin

4月日更

阿里P7手把手教你!系统学Android从零开始,内含福利

欢喜学安卓

android 程序员 面试 移动开发

6种常见的地标识别算法整理和总结

华为云开发者联盟

KNN CNN 地标识别 GLDv2 地标识别算法

关于 Spring 中 getBean 的全流程源码解析

小傅哥

Java spring 源码分析 小傅哥 getBean流程

一文搞懂分布式锁的原理与实现

架构精进之路

分布式锁 4月日更

[转] 程序员在工作中如何做好技术积累

小江

技术管理 架构师 自我思考 个人总结

陌陌一面,为什么SpringBoot的 jar 可以独立运行?

Java小咖秀

jar maven springboot 集成 pom

【LeetCode】移除元素Java题解

Albert

算法 LeetCode 4月日更

重读《重构2》- 封装记录

顿晓

重构 4月日更

技术干货 | 基于MindSpore更好的理解Focal Loss

华为云开发者联盟

损失函数 mindspore Focal Loss 图像物体检测 采样

java数组打印的几种方式

Sakura

4月日更

Ubuntu 20.04 快捷键整理

TroyLiu

Linux ubuntu 效率 操作系统 快捷键

图算法系列之无向图的数据结构

Silently9527

Java 数据结构和算法 图算法 无向图

app架构师,10天拿到字节跳动安卓岗位offer,好文推荐

欢喜学安卓

android 程序员 面试 移动开发

用WASM连接Rust与Python | Rust 学习笔记(三)

李大狗

Python rust 狗哥 Wasm

深入剖析共识性算法 Raft

vivo互联网技术

复制 选举 分布式协调 Leader Follower

女朋友问我:什么是 MySQL 的全局锁、表锁、行锁?

一个优秀的废人

MySQL 数据库 锁机制 备份

面试官关于线程池的这个问题把我问懵逼了。

why技术

面试 Jav 1 周年盛典

一文带你更方便的控制 goroutine

万俊峰Kevin

线程 并发 Go 语言 goroutine

模块二课后作业

Damon

带你入门目标检测算法

华为云开发者联盟

网络 数据集 目标检测 yolo two-stage

面向K8s设计误区

阿里巴巴中间件

云计算 Kubernetes 容器 分布式

女朋友问我:MySQL 事务与 MVCC 原理是怎样的?

一个优秀的废人

Java 数据库 事务隔离级别 事务 MVCC

这三年被分布式坑惨了,曝光十大坑

悟空聊架构

新一代容器,安全容器kata-container实践

ilinux

Kubernetes 容器

MySQL权限管理实战!

Simon

MySQL 权限管理

在 Elasticsearch 中存储 Open Distro for Elasticsearch 的 Performance Analyzer 输出_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章