写点什么

伯克利提出数据增强新方法,计算速度提升 1000 倍

  • 2019-06-22
  • 本文字数:2408 字

    阅读完需:约 8 分钟

伯克利提出数据增强新方法,计算速度提升1000倍

来自伯克利的人工智能研究团队提出了一种基于群体的数据增强算法(PBA),这是一种能快速有效地学习最新方法来增强神经网络训练数据的算法。PBA 的输出结果足以与之前 CIFAR 和 SVHN 数据集上的最佳成绩匹敌,但前者的计算量只有千分之一,从而使研究者和从业者使用单颗工作站 GPU 就能有效地学习新的增强策略。用户可以在众多场景中使用 PBA 来提升图像识别任务中的深度学习性能。


作者在近期发布的一篇论文中探讨了 PBA 的表现(https://arxiv.org/abs/1905.05393.pdf),并介绍了在 Tune 框架(https://ray.readthedocs.io/en/latest/tune.html)上对新数据集使用 PBA 算法的简单步骤(https://github.com/arcelien/pba)。

为什么要关注数据增强?

近年来深度学习模型的发展主要归功于这些年收集到的庞大而多样的数据。数据增强是一种策略,使从业者无需收集新数据就能显著提升已有数据的多样性,从而更好地服务训练模型。诸如裁剪、填充和水平翻转等数据增强技术通常用于训练大型神经网络。然而,神经网络训练中使用的大多数方法只用到了基本的增强技巧。虽然神经网络体系结构的研究愈加深入,但业界开发更强大的数据增强技术,探索能够捕获数据不变属性的数据增强策略的步伐却非常缓慢。



一张数字”3“的原始图像与应用基础数据增强算法之后的结果。


最近,谷歌通过 AutoAugment(https://arxiv.org/abs/1805.09501)这种新的自动数据增强技术提升了 CIFAR-10 等数据集的精确度。之前的数据增强只使用水平翻转或填充和裁剪等一组固定的转换,而 AutoAugment 的成果表明这种老式算法有很大的改进潜力。AutoAugment 引入了 16 种几何和基于颜色的转换,并制定了一种新的增强策略,可以对每批数据应用最多两个有一定幅度级别的转换。训练模型会直接用数据强化学习这些性能更高的增强策略。

有什么成果?

AutoAugment 是一种成本高昂的算法,它需要训练 15,000 个模型才能收敛,才能为基于强化学习的策略生成足够的样本。样本之间不共享计算过程,学习 ImageNet 数据集的增强策略需要 15,000 个 NVIDIA Tesla P100 GPU 小时,学习 CIFAR-10 需要 5,000 GPU 小时。举例来说,如果使用谷歌云的 P100 GPU 按需服务,学习 CIFAR 策略将花费大约 7,500 美元,而 ImageNet 策略需要 37,500 美元!因此在培训新数据集时,更常见的用例是使用公开发布的,展示出比较好效果的策略。



对图像应用基于群体的增强的效果,按照训练度百分比分类

基于群体的数据增强

伯克利团队提出的数据增强策略名为基于群体的增强(PBA),其在各种神经网络模型上实现的测试准确度与谷歌方案接近,但需要的计算量少了三个数量级。团队在 CIFAR-10 数据集上训练几个小型模型副本来学习增强策略,使用 NVIDIA Titan XP GPU 时只需要 5 个小时就能学成一个策略。之后迁移到大型模型体系和 CIFAR-100 数据集上从头开始训练时,该策略表现出了强大的性能。


与训练大型 CIFAR-10 网络需要花费的几天收敛时间相比,预先运行 PBA 的成本很低,却能显著改善结果。例如,在 CIFAR-10 上训练 PyramidNet 模型时,使用 NVIDIA V100 GPU 需要 7 天以上,而学习 PBA 策略只会增加 2%的预计算训练时间开销。对于 SVHN 来说这种开销甚至更低,少于 1%。



在 WideResNet、Shake-Shake 和 PyramidNet + ShakeDrop 模型中,PBA、AutoAugment 和仅使用水平翻转,填充和裁剪的基础策略之间的 CIFAR-10 测试错误对比。PBA 明显优于基础策略,与 AutoAugment 相当。


PBA 利用基于群体的训练算法(https://deepmind.com/blog/population-based-training-neural-networks/)来生成增强策略调度,该调度可以基于当前的训练 epoch 做调整。这与固定增强策略正好相反,后者对不同的 epoch 都使用相同的转换。


这样一来,单机工作站用户就可以很容易试验不同的搜索算法和增强操作。一个有意思的用例是引入新的增强操作,这些操作可能针对特定的数据集或图像模态,并能够快速生成定制的,高性能的增强调度。伯克利通过变量控制研究方法发现,学习的超参数和调度顺序都显著影响结果质量。

增强调度是怎样学习的?

伯克利团队使用 16 个小型 WideResNet 模型作为群体进行基于群体的训练。群体中的每个 worker 都将学习自己的候选超参数调度。之后团队用性能最佳的调度迁移到大型模型上开始从头训练,从中得出测试误差指标。



基于群体的训练框架。通过训练一群神经网络来找出超参数调度。它结合了随机搜索(发现)和复制高性能的 worker 模型权重(利用)两种手段。


群体模型在目标数据集上训练时,一开始所有的增强超参数都设置为 0(未应用增强)。“利用和发现”过程会频繁将高绩效 worker 的模型权重复制到低绩效 worker 来“利用”前者,然后扰乱 worker 的超参数来“探索”。这个过程能够在 worker 之间共享大量计算过程,并针对不同的训练区域使用不同的增强超参数。因此,PBA 用不着训练几千个模型才收敛,用很少的计算量就能获得很高的性能。

示例和代码

利用 Tune 内置的 PBT 实现就可以直接使用 PBA 了。


import raydef explore(config):    """Custom PBA function to perturb augmentation hyperparameters."""    ...
ray.init()pbt = ray.tune.schedulers.PopulationBasedTraining( time_attr="training_iteration", reward_attr="val_acc", perturbation_interval=3, custom_explore_fn=explore)train_spec = {...} # Things like file paths, model func, compute.ray.tune.run_experiments({"PBA": train_spec}, scheduler=pbt)
复制代码


这里用自定义探索函数调用 Tune 的 PBT 实现。这将创建 16 个 WideResNet 模型的副本并同时训练它们。每个副本使用的策略调度都会保存到磁盘,并可在训练结束后迁移到新模型训练中。


可以参考这里的说明(https://github.com/arcelien/pba)运行PBA。在Titan XP 上,只需要一个小时即可学到 SVHN 数据集上的高性能增强策略调度。在自定义数据集上也可以轻松使用 PBA:只需定义一个新的 dataloader 即可。



2019-06-22 08:006604

评论 1 条评论

发布
用户头像
很好的想法。
2019-06-22 20:45
回复
没有更多了
发现更多内容

新一代运营保障体系探索

鲸品堂

运营 解决方案 运营商 通信运营商

量化AI智能交易软件,马丁策略交易

iOS 面试策略之语言工具-Swift vs. Objective-C

iOSer

ios objective-c swift 面试 移动开发

拜托阿里老表爆肝整理10W字Java高级面试精华!帮我成功入职字节

比伯

Java 编程 架构 互联网 计算机

zookeeper的watch机制

大数据技术指南

zookeeper 5月日更

微信标准版交易组件使用教程

frank-say

微信小程序 微信 大前端

敏捷MVP面面观

禅道项目管理

敏捷 MVP

数据结构与算法必知基础知识

bigsai

数据结构 算法

强推!Java大牛熬夜一周梳理的 Spring IOC笔记,收藏一波

飞飞JAva

Java 容器

直呼内行!靠着这份阿里10w字面试总结,我成功收到了4个大厂offer

Java 程序员 架构 面试

企业密码管理为何仍然是一个难题?

龙归科技

密码学 密码 弱密码

硬核资源!清华博士的Spring Boot中AOP与SpEL笔记,码农:膜拜

牛哄哄的java大师

Java springboot spring aop

撸完腾讯T4大佬整理的ThreadLocal笔记,解决内存泄漏只是小儿科

牛哄哄的java大师

Java ThreadLocal

大促秒杀场景技术方案

Mars

秒杀

直呼内行!阿里大佬离职带出内网专属“高并发系统设计”学习笔记

Java 程序员 架构 面试

【LeetCode】数组异或操作Java题解

Albert

算法 LeetCode 5月日更

在校生丨五面丨拿到阿里offer,你还在边“摸鱼”边抱怨“行业内卷”吗?

Java架构师迁哥

消息队列架构设计文档

高亮

架构实战营

大厂常问iOS面试题汇总!

iOS猿_员

ios 面试 ios开发

消息队列详细架构设计

Lane

消息队列架构设计文档

方堃

模模搭古城搭建学习笔记4:完结篇

ThingJS数字孪生引擎

物联网 3D可视化 数字孪生

软件质量指标自动度量方法

鸿渐科技_mason

代码质量 源代码 软件安全 软件质量指标 鸿渐科技

技术干货 | 轻松两步完成向 mPaaS 小程序传递启动参数

蚂蚁集团移动开发平台 mPaaS

ios android 移动开发 mPaaS

React Hook | 必 学 的 9 个 钩子

程序员海军

最佳实践 方法论 大前端 React Hooks 引航计划

详解 WebRTC 传输安全机制:一文读懂 DTLS 协议

阿里云CloudImagine

阿里云 WebRTC 通信协议 视频云 流媒体传输

Linux 的 IO 通信 以及 Reactor 线程模型详解

Linux服务器开发

reactor 后端 多线程 Linux服务器开发 网络io

变电站无人值守也能运筹帷幄?数据这样监控,时效节省高达90%

一只数据鲸鱼

数据可视化 3D可视化 智慧电网 变电站

这份Mybaits缓存机制总结,阿里大佬看完直呼牛批,到底有多强?

飞飞JAva

Yarn的架构和原理

五分钟学大数据

hadoop YARN 5月日更

☕【Java技术之旅】来啊!带你认识一下String字符串

码界西柚

JVM string 5月日更

伯克利提出数据增强新方法,计算速度提升1000倍_AI&大模型_Daniel Ho_InfoQ精选文章