写点什么

LineFlow 开源:比 PyTorch 简洁数倍,适用任何框架的 NLP 数据集处理程序

  • 2019-12-31
  • 本文字数:2771 字

    阅读完需:约 9 分钟

LineFlow开源:比PyTorch简洁数倍,适用任何框架的NLP数据集处理程序

一般来讲,用 PyTorch 处理自然语言比较繁琐。于是,国外一位开发者 Yasufumi TANIGUCHI 开发了 LineFlow,为了尽可能减轻编码的痛苦,并保证完成同样的任务。Yasufumi TANIGUCHI 表示,LineFlow 要比 PyTorch 简洁数倍,让我们来看看 LineFlow 究竟能简洁到什么地步?


对自然语言处理任务来说,你可能需要在预处理中对文本进行词法分析或构建词汇表。因为这个过程非常痛苦,所以我创建了LineFlow ,尽可能让整个过程干净整洁。真正的代码看起来是什么样子?请看下面的图,预处理包括词法分析、词汇表构建和索引。



左边部分是来自 PyTorch 官方示例仓库的示例代码,它对文本数据进行常见的预处理。右边部分是用 LineFolw 编写的,实现了完全相同的处理。看完对比之后,你应该明白 LineFlow 是如何减轻痛苦的。要查看完整的代码,可以访问此链接


在本文中,我将详细解释上图右边部分的代码,并讲解 LineFlow 的用法。

加载文本数据

文本数据的加载,是通过上面代码中的第 8 行完成的,我稍后会详细解释这个 map。lf.TextDataset 将文本文件的路径作为参数并进行加载。


dataset = lf.TextDataset(path, encoding='utf-8').map(...)
复制代码


lf.TextDataset 要求的数据格式是每行对应一个数据。如果文本数据满足此条件,则可以加载任何类型的文本数据。




加载之后,它将文本数据转换为列表。列表中的项对应于文本数据中的行。 请看下图,这是 lf.TextDataset 的直观图像。图中的 d 代表代码中的 dataset



LineFlow 已经提供了一些公开可用的数据集。所以你可以马上使用它。要查看提供的数据集,请访问此链接

2. 标记化

文本标记化也是通过第 8 行完成的。map将作为参数传递的处理应用到文本数据的每一行。


dataset = lf.TextDataset(...).map(lambda x: x.split() + ['<eos>'])
复制代码


请看下图。这是 lf.TextDataset.map 的直观图像。图中的 d 代表代码中的 dataset



让我们深入了解下面的实际处理过程。


lambda x: x.split() + ['<eos>']
复制代码


我们将文本数据中的每一行按空格拆分为标记,然后将 <eos>添加到这些标记的末尾。我们遵循 WikiText 官方页面上的处理方式。


此时,我们使用 str.split 进行标记化。我们可以使用其他的标记化方法,如 spaCyStanfordNLPBling Fire 等。例如,如果你想使用 Bling Fire,我们将得到以下代码。


>>> from blingfire import text_to_words>>> d = lf.TextDataset('/path/to/your/text')>>> d.map(text_to_words).map(str.split)
复制代码


另外,只要我们的处理将每行文本数据作为参数,就可以执行任何我们想要的处理。例如,我们可以计算标记的数量。在下面的代码中,标记的数量是在第二个元素中定义的。


>>> d = lf.TextDataset('/path/to/text')>>> d.map(tokenize).map(lambda x: (x, len(x)))
复制代码


当我们想要制作用于注意力机制或长短期记忆网络的掩码时,这种处理就很有用。

3. 索引

索引是由第 9 行到第 12 行完成的。这些行如下图所示。在这个代码块中,我们构建了词汇表和索引。让我们按顺序来查看这些内容。


for word in dataset.flat_map(lambda x: x):    self.dictionary.add_word(word)return torch.LongTensor(dataset.flat_map(...))
复制代码


首先我们将看到构建词汇表的代码块。在下面的代码块中,我们构建了词汇表。 flat_map 将作为参数传递的处理应用于数据中的每一行,然后对其进行扁平化。因此,我们将在 dataset.flat_map(lambda x: x) 之后获取单个标记。


for word in dataset.flat_map(lambda x: x):    self.dictionary.add_word(word)
复制代码


请看下图。这是 dataset.flat_map(lambda x: x) 的直观图像。图中的 d 代表代码中的 'dataset`。



flat_map 有点令人困惑,但它等同于下面的代码。


>>> from itertools import chain>>> chain.from_iterable(map(lambda x: x, dataset))>>>>>> dataset.flat_map(lambda x: x) # same as above
复制代码


在使用 flat_map 提取每个标记之后,我们将标记传递给 self.dictionary.add_word 来构建词汇表。我将不会解释它是如何工作的,因为这与本文无关。但如果你对它的内部实现感兴趣的话,请查看此链接


self.dictionary.add_word(word)
复制代码


接下来,我们将看到索引的代码块。索引是由一下的代码块来完成的。我们还使用 flat_map 来索引每个标记并使其扁平化。这是因为 PyTorch 的示例需要扁平化标记的张量,所以我们就这么做了。


dataset.flat_map(    [lambda x: self.dictionary.word2idx[token] for token in x)])
复制代码


请看下图。这是 dataset.flat_map(indexer) 的直观图像。图中的 d 代表代码中的 dataset



此代码等同于以下代码。


>>> from itertools import chain>>> chain.from_iterable(map(indexer, dataset))>>>>>> dataset.flat_map(indexer) # same as above
复制代码


最后,我们用 torch.LongTensor 将它包起来,把它变成张量。至此就完成了文本数据的加载。


return torch.LongTensor(dataset.flat_map(...))
复制代码


现在我们可以阅读完整的代码了,如下所示:


import osimport torchimport lineflow as lfclass Dictionary(object):    def __init__(self):        self.word2idx = {}        self.idx2word = []    def add_word(self, word):        if word not in self.word2idx:            self.idx2word.append(word)            self.word2idx[word] = len(self.idx2word) - 1        return self.word2idx[word]    def __len__(self):        return len(self.idx2word)class Corpus(object):    def __init__(self, path):        self.dictionary = Dictionary()        self.train = self.tokenize(os.path.join(path, 'train.txt'))        self.valid = self.tokenize(os.path.join(path, 'valid.txt'))        self.test = self.tokenize(os.path.join(path, 'test.txt'))    def tokenize(self, path):        assert os.path.exists(path)        dataset = lf.TextDataset(path, encoding='utf-8').map(lambda x: x.split() + ['<eos>'])        for word in dataset.flat_map(lambda x: x):            self.dictionary.add_word(word)        return torch.LongTensor(dataset.flat_map(            lambda x: [self.dictionary.word2idx[token] for token in x]))
复制代码


这就是全部的解释。LineFlow 通过对文本数据进行向量化来完成较少的循环和嵌套代码。我们可以使用 Python 的 map 来完成同样的工作。但是,LineFlow 为我们提供了可读的、干净的代码,因为它像管道(Fluent Interface)一样构建了处理过程。


如果你喜欢 LineFlow,并想了解更多信息,请访问 LineFlow 在 GitHub 的仓库


作者介绍:


Yasufumi TANIGUCHI,软件工程师,对自然语言处理有着浓厚的兴趣。本文最初发表于 Medium 博客,经原作者 Yasufumi TANIGUCHI 授权,InfoQ 中文站翻译并分享。


原文链接:


https://towardsdatascience.com/lineflow-introduction-1caf7851125e


2019-12-31 09:484170
用户头像
赵钰莹 极客邦科技 总编辑

发布了 934 篇内容, 共 720.0 次阅读, 收获喜欢 2717 次。

关注

评论

发布
暂无评论
发现更多内容

最常见的 10种网络安全攻击类型

郑州埃文科技

网络安全 IP地址 网络攻击

以合规交易释放数据“红利”,合合信息旗下启信宝签约福建大数据交易所首批数商

合合技术团队

数据 峰会

一对一直播系统源码——多人语音聊天室

开源直播系统源码

直播系统源码 语音直播系统 一对一直播视频源码 一对一语音直播

Java 泛型 T,E,K,V,,傻傻分不清?

TimeFriends

8月月更

测试开发【Mock 平台】09 开发:项目管理(五)搜索、删除和Table优化

MegaQi

测试平台开发教程 8月月更

DAPP和APP有哪些区别?多链跨链NFT铸造挖矿dapp系统开发技术原理分析

开发微hkkf5566

阿里大佬 推荐的 “ Spring Cloud Alibaba项目文档 ” 正式发布

冉然学Java

Java 微服务 Spring Cloud Alibaba

开源 | WLock:高可用分布式锁设计实践

开源 分布式 分布式锁

StarRocks 技术内幕 | 基于全局字典的极速字符串查询

StarRocks

数据库

微服务性能分析|Pyroscope 在 Rainbond 上的实践分享

北京好雨科技有限公司

Kubernetes 微服务 云原生

DBPack 数据库限流熔断功能发布说明

峨嵋闲散人

分布式事务 云原生 分库分表 dbmesh Database Mesh

增强分析在百度统计的实践

百度Geek说

数据库

连流量染色都没有,你说要搞微服务?

得物技术

架构 微服务 云原生

为什么电商云产品需要 Assisted Service Module (ASM) 模块的支持

汪子熙

typescript 电商 SAP 8月月更 Storefront

一文详解特权访问管理(PAM)

SEAL安全

安全 访问权限 访问管理 特权访问

《数字经济全景白皮书》银行业数字普惠金融发展与优化策略分析 发布

易观分析

金融 数字经济全景白皮书 易观分析

推荐一款微软出品的开发神器,体验不输IDEA!(含参考资料和项目源码)

收到请回复

面试 springboot 应届生 金九银十 java项目实战分享

前端监控系列2 |聊聊 JS 错误监控那些事儿

字节跳动终端技术

APM 前端监控 火山引擎 JS错误

SpringBoot 日志的各种使用姿势,你真的用对了吗?

程序知音

Java spring 程序员 springboot 后端技术

多原则等于无原则,微服务识别方法究竟该怎么选?

老坛架构

架构 微服务

人手一套的K8S命令集合,它来了!

wljslmz

云计算 Kubernetes 容器 8月月更

寻找OpenHarmony「锦鲤」|万元豪礼+技术干货全是你的!

OpenHarmony开发者

OpenHarmony

35岁程序员危机,有何破解之法?

博文视点Broadview

属实不赖!Alibaba开源GitHub星标114K微服务架构全彩进阶手册

冉然学Java

Java 阿里巴巴 开源 微服务 微服务架构

一文搞懂│mysql 中的备份恢复、分区分表、主从复制、读写分离

MySQL 高并发 经验分享 签约计划第三季 8月月更

Kotlin协程解析系列(上):协程调度与挂起

vivo互联网技术

kotlin 协程

为什么不做APP而要做小程序

源字节1号

小程序开发

Groovy语境下的Map

FunTester

用Rust编写的Linux内核GPU驱动程序,或将到来

非凸科技

Linux gpu rust 编程语言

基于RocksDB实现高可靠、低时延的MQTT数据持久化

EMQ映云科技

物联网 mqtt RocksDB emqx 8月月更

LineFlow开源:比PyTorch简洁数倍,适用任何框架的NLP数据集处理程序_开源_Yasufumi TANIGUCHI_InfoQ精选文章