写点什么

“不正经”的卷积神经网络

  • 2019-12-05
  • 本文字数:1749 字

    阅读完需:约 6 分钟

“不正经”的卷积神经网络

卷积中的不变性

图像任务,都需要识别出图像中的主体,用于分类,检测,分割,比如下面的验证码识别。



但是同样的目标,在不同的图片中,会存在位置的偏移,角度的旋转,尺度的大小。卷积神经网络要能够应对这些情况,比如分类任务,对于同样的目标在不同图像中的偏移,旋转,尺度,要输出同样的结果。



这便是我们常说的旋转,平移,尺度不变性了


cnn 有这个能力吗?有。


前面我们说过 pooling,它有一定的平移不变性,而且网络越深,越强大。但是,它的这个能力仍然是有限的,受卷积核大小和感受野大小的约束。


尺度不变性和旋转不变性呢?很遗憾,几乎没有,不然 Hinton 也不会搞 capsule。


我们通常做的随机裁剪,旋转,缩放等操作,就是利用了 cnn 强大的学习能力,制造出了各种版本的图片供其学习。为了模型的鲁棒性,需要生成大量的数据。


一句话,网络模型对于物体几何形变的适应能力几乎完全来自于数据本身所具有的多样性。

为什么?

前面我们说了问题,那为什么会这样呢?因为 cnn 就没有显式地学习这些信息,而卷积操作本身具有非常固定的几何结构,标准的卷积操作是一个非常规矩的采样,通常是正方形。


那,能不能不规矩呢?首先我们看什么是不规矩,下图来自于【1】。



a 图大家很熟悉,标准的 3*3 卷积核,而 b,c,d 虽然也是 9 个采样点,但是每个采样点相对于中心点的偏移与 a 很不一样。b 是一个通用的展示,即完全没有规律。c,d 是 b 的特例。


我们将这样的卷积,称为(deformable convolutional networks)可变形卷积,笔者更喜欢称之为“不正经卷积”。


这种“不正经卷积”的特点,1 是采样视野大于对应版本的标准卷积(带孔卷积不算),2 是它的感受野是不规则的形状。

有什么好处?


我们看上面的一张图,假如我们有一个分割任务,要分割出图中的尺度不同的动物。


我们先看左边的图,标准的卷积,感受野必然是一个方方正正的区域。顶图有一个中心像素,它的感受野是 3*3,到了中间的图,周围四个角点又可以进一步扩展感受野,直到底部的图。


所以对于顶部目标的中心像素,经历了两次 33 卷积,它的感受野是固定的 55,与动物本身的形状并不匹配。而同样的两个 3*3 的卷积,右边的“不正经卷积”,则由于灵活的感受野,所覆盖的区域更大,也更匹配了目标本身的形状。


这是一个非常通用的问题,标准卷积对目标的形状感受野不够灵活,卷积的效率自然也就下降。而可变形卷积则利用了不规则可变化的形状,改善了这两个问题。

怎么实现?

可变形卷积这么灵活,实现起来麻烦吗?答案是不麻烦,只需要增加一个偏移量即可,具体来说看下图。



与标准卷积核相比,一个可变形卷积核,用于卷积的像素相对于中心像素各自的 x,y 方向上的偏移没有了规律,如果我们学习到了这个规律(实际就是用卷积核来记录它),就完成这件事情了。



实际实现就是多了一个 offset 层,通过 offset 输出通道数,我们可以控制要学习的变形的种类。当然,这个通道数一定是 2N 的,因为要同时记录 x 和 y 方向。

总结

做一个简单的总结,首先我们说说好处。(1)增加了网络的空间变形适应性,这也是网络要解决的本质问题。(2)不增加额外的标注信息和训练代价,仍然是原来的数据就可以训练,而且同时训练卷积系数和偏移量。(3)对于复杂的任务提升效果明显,具体的实验结果指标,可以至论文中看,也可以自己训着看。


坏处主要是增加了参数量与计算量,不过这个计算量其实不大,可以通过分组进行控制。


值得注意的是,可变形卷积并非是第一个研究这个问题的,在 STN【2】中,已经通过 Spatial Transformer Layer 来实现了对旋转平移缩放等信息的学习。Active Convolution,Atrous convolution 等都曾试图解决类似问题。


参考文献


【1】Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks[J]. CoRR, abs/1703.06211, 2017, 1(2): 3.


【2】Jaderberg M, Simonyan K, Zisserman A. Spatial transformer networks[C]//Advances in neural information processing systems. 2015: 2017-2025.


作者介绍


言有三,真名龙鹏,曾先后就职于奇虎 360AI 研究院、陌陌深度学习实验室,6 年多计算机视觉从业经验,拥有丰富的传统图像算法和深度学习图像项目经验,拥有技术公众号《有三 AI》,著有书籍《深度学习之图像识别:核心技术与案例实战》。


原文链接


https://mp.weixin.qq.com/s/aLvlLi97JTd_cCfCZfraIg


2019-12-05 19:082383
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 600.7 次阅读, 收获喜欢 1982 次。

关注

评论

发布
暂无评论
发现更多内容

动态规划(详解矩阵连乘 案例+Java代码实现)

若尘

算法 动态规划 矩阵运算 java代码 6月日更

“盒模型“初探

编程三昧

CSS css3 大前端 盒模型

Hello Python! 第一天学 Pyhton 语言

在即

6月日更

微博评论的高性能高可用计算架构设计

唐高为

直击Huawei Mate 40产线背后的华为云IoT智能制造

华为云开发者联盟

IoT 数字化转型 数字孪生 华为云IoT

GrowingIO Design 组件库搭建之组件开发

GrowingIO技术专栏

组件

vim 操作模式简介

编程三昧

vim 工具

用了10年Windows后,我最终转向Linux

学神来啦

Linux windows

《面试官:谈谈你对索引的认知》系列之磁盘I/O

架构精进之路

MySQL 索引结构 6月日更

react源码解析4.源码目录结构和调试

全栈潇晨

React Hooks react源码

详解Camtasia的注释功能

淋雨

视频剪辑 Camtasia 录屏

五大新品+两大黑科技,看华为云如何升级基础设施让用户“躺平”

华为云开发者联盟

云原生 基础设施 实景三维建模 计算实例C7 分布式云

实现多级缓存架构设计方案

xcbeyond

缓存 缓存架构 6月日更

GrowingIO 前端团队对于 GraphQL 的实践总结

GrowingIO技术专栏

大前端 graphql

中断Hwi:提高鸿蒙轻内核系统实时性及执行效率的秘密武器

华为云开发者联盟

鸿蒙 硬件 中断 鸿蒙轻内核 中断信号

C 语言面向对象的封装方式(示例)

实力程序员

鸿蒙能成为世界第三的操作系统吗?

小智

华为 鸿蒙 操作系统

论文解读丨空洞卷积框架搜索

华为云开发者联盟

网络模型 目标检测算法 空洞卷积 卷积 空洞卷积框架

面试系列-3 限流场景实践

李阿柯

php lua redis 面试 限流算法

BZZ算力挖矿系统开发功能丨BZZ算力挖矿源码设计

系统开发咨询1357O98O718

在Spring Bean实例过程中,如何使用反射和递归处理的Bean属性填充?

小傅哥

Java spring 小傅哥 反射调用 属性填充

React Hooks - 如何安全地使用state

蛋先生DX

大前端 React React Hooks JavaScrip 6月日更

为什么要做语音聊天室

anyRTC开发者

音视频 WebRTC 语音 RTC

SMT产线可视化管理,智能工业助力全渠道优化

一只数据鲸鱼

数据可视化 智慧工厂 SMT 智慧工业

IPFS云算力挖矿系统开发(详情)丨IPFS云算力(源码)案例

系统开发咨询1357O98O718

玩转容器存储QoS

焱融科技

云计算 容器 云原生 QoS 超融合

架构实战营 模块五作业

netspecial

架构实战营

Redis数据结构

邱学喆

数据库 redis 跳跃表

【Flutter 专题】114 图解自定义 ACEProgressPainter 对比进度图

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 6月日更

一文了解预训练语言模型!

博文视点Broadview

有点难的 webpack 知识点:Dependency Graph 深度解析

范文杰

webpack 6月日更

“不正经”的卷积神经网络_AI&大模型_言有三_InfoQ精选文章