写点什么

LineFlow 开源:比 PyTorch 简洁数倍,适用任何框架的 NLP 数据集处理程序

  • 2019-12-31
  • 本文字数:2771 字

    阅读完需:约 9 分钟

LineFlow开源:比PyTorch简洁数倍,适用任何框架的NLP数据集处理程序

一般来讲,用 PyTorch 处理自然语言比较繁琐。于是,国外一位开发者 Yasufumi TANIGUCHI 开发了 LineFlow,为了尽可能减轻编码的痛苦,并保证完成同样的任务。Yasufumi TANIGUCHI 表示,LineFlow 要比 PyTorch 简洁数倍,让我们来看看 LineFlow 究竟能简洁到什么地步?


对自然语言处理任务来说,你可能需要在预处理中对文本进行词法分析或构建词汇表。因为这个过程非常痛苦,所以我创建了LineFlow ,尽可能让整个过程干净整洁。真正的代码看起来是什么样子?请看下面的图,预处理包括词法分析、词汇表构建和索引。



左边部分是来自 PyTorch 官方示例仓库的示例代码,它对文本数据进行常见的预处理。右边部分是用 LineFolw 编写的,实现了完全相同的处理。看完对比之后,你应该明白 LineFlow 是如何减轻痛苦的。要查看完整的代码,可以访问此链接


在本文中,我将详细解释上图右边部分的代码,并讲解 LineFlow 的用法。

加载文本数据

文本数据的加载,是通过上面代码中的第 8 行完成的,我稍后会详细解释这个 map。lf.TextDataset 将文本文件的路径作为参数并进行加载。


dataset = lf.TextDataset(path, encoding='utf-8').map(...)
复制代码


lf.TextDataset 要求的数据格式是每行对应一个数据。如果文本数据满足此条件,则可以加载任何类型的文本数据。




加载之后,它将文本数据转换为列表。列表中的项对应于文本数据中的行。 请看下图,这是 lf.TextDataset 的直观图像。图中的 d 代表代码中的 dataset



LineFlow 已经提供了一些公开可用的数据集。所以你可以马上使用它。要查看提供的数据集,请访问此链接

2. 标记化

文本标记化也是通过第 8 行完成的。map将作为参数传递的处理应用到文本数据的每一行。


dataset = lf.TextDataset(...).map(lambda x: x.split() + ['<eos>'])
复制代码


请看下图。这是 lf.TextDataset.map 的直观图像。图中的 d 代表代码中的 dataset



让我们深入了解下面的实际处理过程。


lambda x: x.split() + ['<eos>']
复制代码


我们将文本数据中的每一行按空格拆分为标记,然后将 <eos>添加到这些标记的末尾。我们遵循 WikiText 官方页面上的处理方式。


此时,我们使用 str.split 进行标记化。我们可以使用其他的标记化方法,如 spaCyStanfordNLPBling Fire 等。例如,如果你想使用 Bling Fire,我们将得到以下代码。


>>> from blingfire import text_to_words>>> d = lf.TextDataset('/path/to/your/text')>>> d.map(text_to_words).map(str.split)
复制代码


另外,只要我们的处理将每行文本数据作为参数,就可以执行任何我们想要的处理。例如,我们可以计算标记的数量。在下面的代码中,标记的数量是在第二个元素中定义的。


>>> d = lf.TextDataset('/path/to/text')>>> d.map(tokenize).map(lambda x: (x, len(x)))
复制代码


当我们想要制作用于注意力机制或长短期记忆网络的掩码时,这种处理就很有用。

3. 索引

索引是由第 9 行到第 12 行完成的。这些行如下图所示。在这个代码块中,我们构建了词汇表和索引。让我们按顺序来查看这些内容。


for word in dataset.flat_map(lambda x: x):    self.dictionary.add_word(word)return torch.LongTensor(dataset.flat_map(...))
复制代码


首先我们将看到构建词汇表的代码块。在下面的代码块中,我们构建了词汇表。 flat_map 将作为参数传递的处理应用于数据中的每一行,然后对其进行扁平化。因此,我们将在 dataset.flat_map(lambda x: x) 之后获取单个标记。


for word in dataset.flat_map(lambda x: x):    self.dictionary.add_word(word)
复制代码


请看下图。这是 dataset.flat_map(lambda x: x) 的直观图像。图中的 d 代表代码中的 'dataset`。



flat_map 有点令人困惑,但它等同于下面的代码。


>>> from itertools import chain>>> chain.from_iterable(map(lambda x: x, dataset))>>>>>> dataset.flat_map(lambda x: x) # same as above
复制代码


在使用 flat_map 提取每个标记之后,我们将标记传递给 self.dictionary.add_word 来构建词汇表。我将不会解释它是如何工作的,因为这与本文无关。但如果你对它的内部实现感兴趣的话,请查看此链接


self.dictionary.add_word(word)
复制代码


接下来,我们将看到索引的代码块。索引是由一下的代码块来完成的。我们还使用 flat_map 来索引每个标记并使其扁平化。这是因为 PyTorch 的示例需要扁平化标记的张量,所以我们就这么做了。


dataset.flat_map(    [lambda x: self.dictionary.word2idx[token] for token in x)])
复制代码


请看下图。这是 dataset.flat_map(indexer) 的直观图像。图中的 d 代表代码中的 dataset



此代码等同于以下代码。


>>> from itertools import chain>>> chain.from_iterable(map(indexer, dataset))>>>>>> dataset.flat_map(indexer) # same as above
复制代码


最后,我们用 torch.LongTensor 将它包起来,把它变成张量。至此就完成了文本数据的加载。


return torch.LongTensor(dataset.flat_map(...))
复制代码


现在我们可以阅读完整的代码了,如下所示:


import osimport torchimport lineflow as lfclass Dictionary(object):    def __init__(self):        self.word2idx = {}        self.idx2word = []    def add_word(self, word):        if word not in self.word2idx:            self.idx2word.append(word)            self.word2idx[word] = len(self.idx2word) - 1        return self.word2idx[word]    def __len__(self):        return len(self.idx2word)class Corpus(object):    def __init__(self, path):        self.dictionary = Dictionary()        self.train = self.tokenize(os.path.join(path, 'train.txt'))        self.valid = self.tokenize(os.path.join(path, 'valid.txt'))        self.test = self.tokenize(os.path.join(path, 'test.txt'))    def tokenize(self, path):        assert os.path.exists(path)        dataset = lf.TextDataset(path, encoding='utf-8').map(lambda x: x.split() + ['<eos>'])        for word in dataset.flat_map(lambda x: x):            self.dictionary.add_word(word)        return torch.LongTensor(dataset.flat_map(            lambda x: [self.dictionary.word2idx[token] for token in x]))
复制代码


这就是全部的解释。LineFlow 通过对文本数据进行向量化来完成较少的循环和嵌套代码。我们可以使用 Python 的 map 来完成同样的工作。但是,LineFlow 为我们提供了可读的、干净的代码,因为它像管道(Fluent Interface)一样构建了处理过程。


如果你喜欢 LineFlow,并想了解更多信息,请访问 LineFlow 在 GitHub 的仓库


作者介绍:


Yasufumi TANIGUCHI,软件工程师,对自然语言处理有着浓厚的兴趣。本文最初发表于 Medium 博客,经原作者 Yasufumi TANIGUCHI 授权,InfoQ 中文站翻译并分享。


原文链接:


https://towardsdatascience.com/lineflow-introduction-1caf7851125e


2019-12-31 09:483036
用户头像
赵钰莹 InfoQ 主编

发布了 882 篇内容, 共 641.1 次阅读, 收获喜欢 2679 次。

关注

评论

发布
暂无评论
发现更多内容

WorkPlus即时通讯app-私有化部署的最佳解决方案

WorkPlus

欧拉与AI深度结合:操作系统升级带来全新智能体验

彭飞

git常用命令之Fetch

百度搜索:蓝易云

git 云计算 Linux 运维 云服务器

PWM 调光的线性降压 LED 恒流驱动器

梦笔生花

openEuler商业化进展可观:累计装机量超610万套,市场持续扩容

彭飞

WorkPlus高效助力企业沟通的专业级即时通讯软件

WorkPlus

WorkPlus:保护组织数据安全与提升企业效率的局域网即时通讯软件

WorkPlus

文心一言 VS 讯飞星火 VS chatgpt (158)-- 算法导论12.3 5题

福大大架构师每日一题

福大大架构师每日一题

和鲸科技CEO范向伟受邀出席港航数据要素流通与生态合作研讨会,谈数据资产入表的战略机会

ModelWhale

数据 数据资产 数据要素 港航

WorkPlus即时通讯软件,带来更轻松、高效的沟通体验

WorkPlus

微服务的学习与实践 主赛道:技术人的 2023 总结

Echo_Wish

微服务 云原生 年度总结 2023 技术总结

活动 | Mint Blockchain 将于 2024 年 1 月 10 号启动 MintPass 限时铸造活动

NFT Research

blockchain NFT Pass

从0到1:志愿者小程序开发心得

CC同学

专业的磁盘管理工具:DiskCatalogMaker 中文激活版

胖墩儿不胖y

Mac软件 磁盘管理工具 磁盘清理管理

简约好用的Markdown文本编辑器:Typora中文激活版

mac大玩家j

文本编辑器 Mac软件 markdown编辑

找不到想找的图片?半小时,帮你实现一个AI版“图片搜索引擎”

鹤涵

Redis 核心技术与实战 openai AIGC ChatGPT

一文搞懂Android和嵌入式Linux开发差异点

巫山老妖

Raw图像处理推荐 Capture One Pro 23中文最新版

胖墩儿不胖y

Mac软件 raw图像 raw图像处理工具

Merlin Protocol,一个专业的比特币生态资产适配协议

TerpLayer

区块链

菜单栏图标管理软件推荐 Bartender最新激活版

mac大玩家j

Mac软件 菜单栏管理工具 菜单栏工具

大数据之云平台的使用与总结 主赛道:技术人的 2023 总结

Echo_Wish

大数据 云平台 年度总结 2023 开天平台

关于Stable Diffusion模型优化分享

AI Stable Diffustion

总结:我在技术写作中踩过的 6 个坑

Java 工程师蔡姬

技术人 21 天技术人写作行动营

Centos7系统K8S集群安装教程。

百度搜索:蓝易云

Linux centos Kubernetes 运维 云服务器

打破多APP困境,WorkPlus统一入口让企业协同更高效

WorkPlus

WorkPlus搭建高效即时通讯,打造高效协作新标杆

WorkPlus

openEuler社区与9大海外开源基金会深入合作,构建全球开源新生态

彭飞

LineFlow开源:比PyTorch简洁数倍,适用任何框架的NLP数据集处理程序_开源_Yasufumi TANIGUCHI_InfoQ精选文章