写点什么

LineFlow 开源:比 PyTorch 简洁数倍,适用任何框架的 NLP 数据集处理程序

  • 2019-12-31
  • 本文字数:2771 字

    阅读完需:约 9 分钟

LineFlow开源:比PyTorch简洁数倍,适用任何框架的NLP数据集处理程序

一般来讲,用 PyTorch 处理自然语言比较繁琐。于是,国外一位开发者 Yasufumi TANIGUCHI 开发了 LineFlow,为了尽可能减轻编码的痛苦,并保证完成同样的任务。Yasufumi TANIGUCHI 表示,LineFlow 要比 PyTorch 简洁数倍,让我们来看看 LineFlow 究竟能简洁到什么地步?


对自然语言处理任务来说,你可能需要在预处理中对文本进行词法分析或构建词汇表。因为这个过程非常痛苦,所以我创建了LineFlow ,尽可能让整个过程干净整洁。真正的代码看起来是什么样子?请看下面的图,预处理包括词法分析、词汇表构建和索引。



左边部分是来自 PyTorch 官方示例仓库的示例代码,它对文本数据进行常见的预处理。右边部分是用 LineFolw 编写的,实现了完全相同的处理。看完对比之后,你应该明白 LineFlow 是如何减轻痛苦的。要查看完整的代码,可以访问此链接


在本文中,我将详细解释上图右边部分的代码,并讲解 LineFlow 的用法。

加载文本数据

文本数据的加载,是通过上面代码中的第 8 行完成的,我稍后会详细解释这个 map。lf.TextDataset 将文本文件的路径作为参数并进行加载。


dataset = lf.TextDataset(path, encoding='utf-8').map(...)
复制代码


lf.TextDataset 要求的数据格式是每行对应一个数据。如果文本数据满足此条件,则可以加载任何类型的文本数据。




加载之后,它将文本数据转换为列表。列表中的项对应于文本数据中的行。 请看下图,这是 lf.TextDataset 的直观图像。图中的 d 代表代码中的 dataset



LineFlow 已经提供了一些公开可用的数据集。所以你可以马上使用它。要查看提供的数据集,请访问此链接

2. 标记化

文本标记化也是通过第 8 行完成的。map将作为参数传递的处理应用到文本数据的每一行。


dataset = lf.TextDataset(...).map(lambda x: x.split() + ['<eos>'])
复制代码


请看下图。这是 lf.TextDataset.map 的直观图像。图中的 d 代表代码中的 dataset



让我们深入了解下面的实际处理过程。


lambda x: x.split() + ['<eos>']
复制代码


我们将文本数据中的每一行按空格拆分为标记,然后将 <eos>添加到这些标记的末尾。我们遵循 WikiText 官方页面上的处理方式。


此时,我们使用 str.split 进行标记化。我们可以使用其他的标记化方法,如 spaCyStanfordNLPBling Fire 等。例如,如果你想使用 Bling Fire,我们将得到以下代码。


>>> from blingfire import text_to_words>>> d = lf.TextDataset('/path/to/your/text')>>> d.map(text_to_words).map(str.split)
复制代码


另外,只要我们的处理将每行文本数据作为参数,就可以执行任何我们想要的处理。例如,我们可以计算标记的数量。在下面的代码中,标记的数量是在第二个元素中定义的。


>>> d = lf.TextDataset('/path/to/text')>>> d.map(tokenize).map(lambda x: (x, len(x)))
复制代码


当我们想要制作用于注意力机制或长短期记忆网络的掩码时,这种处理就很有用。

3. 索引

索引是由第 9 行到第 12 行完成的。这些行如下图所示。在这个代码块中,我们构建了词汇表和索引。让我们按顺序来查看这些内容。


for word in dataset.flat_map(lambda x: x):    self.dictionary.add_word(word)return torch.LongTensor(dataset.flat_map(...))
复制代码


首先我们将看到构建词汇表的代码块。在下面的代码块中,我们构建了词汇表。 flat_map 将作为参数传递的处理应用于数据中的每一行,然后对其进行扁平化。因此,我们将在 dataset.flat_map(lambda x: x) 之后获取单个标记。


for word in dataset.flat_map(lambda x: x):    self.dictionary.add_word(word)
复制代码


请看下图。这是 dataset.flat_map(lambda x: x) 的直观图像。图中的 d 代表代码中的 'dataset`。



flat_map 有点令人困惑,但它等同于下面的代码。


>>> from itertools import chain>>> chain.from_iterable(map(lambda x: x, dataset))>>>>>> dataset.flat_map(lambda x: x) # same as above
复制代码


在使用 flat_map 提取每个标记之后,我们将标记传递给 self.dictionary.add_word 来构建词汇表。我将不会解释它是如何工作的,因为这与本文无关。但如果你对它的内部实现感兴趣的话,请查看此链接


self.dictionary.add_word(word)
复制代码


接下来,我们将看到索引的代码块。索引是由一下的代码块来完成的。我们还使用 flat_map 来索引每个标记并使其扁平化。这是因为 PyTorch 的示例需要扁平化标记的张量,所以我们就这么做了。


dataset.flat_map(    [lambda x: self.dictionary.word2idx[token] for token in x)])
复制代码


请看下图。这是 dataset.flat_map(indexer) 的直观图像。图中的 d 代表代码中的 dataset



此代码等同于以下代码。


>>> from itertools import chain>>> chain.from_iterable(map(indexer, dataset))>>>>>> dataset.flat_map(indexer) # same as above
复制代码


最后,我们用 torch.LongTensor 将它包起来,把它变成张量。至此就完成了文本数据的加载。


return torch.LongTensor(dataset.flat_map(...))
复制代码


现在我们可以阅读完整的代码了,如下所示:


import osimport torchimport lineflow as lfclass Dictionary(object):    def __init__(self):        self.word2idx = {}        self.idx2word = []    def add_word(self, word):        if word not in self.word2idx:            self.idx2word.append(word)            self.word2idx[word] = len(self.idx2word) - 1        return self.word2idx[word]    def __len__(self):        return len(self.idx2word)class Corpus(object):    def __init__(self, path):        self.dictionary = Dictionary()        self.train = self.tokenize(os.path.join(path, 'train.txt'))        self.valid = self.tokenize(os.path.join(path, 'valid.txt'))        self.test = self.tokenize(os.path.join(path, 'test.txt'))    def tokenize(self, path):        assert os.path.exists(path)        dataset = lf.TextDataset(path, encoding='utf-8').map(lambda x: x.split() + ['<eos>'])        for word in dataset.flat_map(lambda x: x):            self.dictionary.add_word(word)        return torch.LongTensor(dataset.flat_map(            lambda x: [self.dictionary.word2idx[token] for token in x]))
复制代码


这就是全部的解释。LineFlow 通过对文本数据进行向量化来完成较少的循环和嵌套代码。我们可以使用 Python 的 map 来完成同样的工作。但是,LineFlow 为我们提供了可读的、干净的代码,因为它像管道(Fluent Interface)一样构建了处理过程。


如果你喜欢 LineFlow,并想了解更多信息,请访问 LineFlow 在 GitHub 的仓库


作者介绍:


Yasufumi TANIGUCHI,软件工程师,对自然语言处理有着浓厚的兴趣。本文最初发表于 Medium 博客,经原作者 Yasufumi TANIGUCHI 授权,InfoQ 中文站翻译并分享。


原文链接:


https://towardsdatascience.com/lineflow-introduction-1caf7851125e


2019-12-31 09:483016
用户头像
赵钰莹 InfoQ 主编

发布了 882 篇内容, 共 638.4 次阅读, 收获喜欢 2679 次。

关注

评论

发布
暂无评论
发现更多内容

一文吃透低代码开发与传统IT开发的区别

树上有只程序猿

软件开发 低代码开发 IT开发

BOE(京东方)发布2023年三季度报告 营收利润双增长 盈利能力持续提升

科技热闻

券商上演“极速交易”,天翼云组播行情解决方案助力券商稳中求快!

Geek_2d6073

掌握Spring事件监听器的内部逻辑与实现

华为云开发者联盟

spring 开发 华为云 华为云开发者联盟

如何优雅的开发?低代码搭建应用如此轻松

互联网工科生

软件开发 低代码平台 JNPF

HarmonyOS电话服务开发指导

HarmonyOS开发者

文心一言 VS 讯飞星火 VS chatgpt (125)-- 算法导论10.6 6题

福大大架构师每日一题

福大大架构师每日一题

WorkPlus:领先的IM软件,助力企业高效沟通与协作

WorkPlus

华为云开源校园行 | 线下meetup • 电子科技大学站

华为云开源

开源 云原生 华为云 Meetup

快速出彩!适合产品经理的10款AI生成PPT工具推荐!

彭宏豪95

人工智能 AI PPT 在线白板 办公软件

第19期 | GPTSecurity周报

云起无垠

golang结构体内存对齐

fm

大模型时代的人工智能+大数据平台,加速创新涌现

阿里云大数据AI技术

人工智能

Navicat Premium 15 for Mac(数据库开发工具)修复密码保存问题 v15.0.30中文激活版

mac

数据库开发工具 苹果mac Windows软件 Navicat Premium 15

最新体育赛事视频直播系统开发解决方案,提高用户黏性

软件开发-梦幻运营部

短视频不仅带火了直播/PK,也带着RTC走进了军备竞赛

X2Rtc

音视频 短视频 RTC

TDengine 受邀参加 CNCC 2023,大会现场展位前“人山人海”!

TDengine

tdengine 时序数据库

OpenHarmony状态变量更改通知:@Watch装饰器

OpenHarmony开发者

三月份发车的Celestia你们拿到了吗

币离海

Celestia tia

API商品数据接口调用实战

Noah

全网最详细4W字Flink全面解析与实践(下)

Java随想录

Java 大数据 flink

数字货币交易所/钱包开发系统开发详细,数字货币钱包/交易所系统开发(开发方案)源码

V\TG【ch3nguang】

第20期 | GPTSecurity周报

云起无垠

DAPP以太链/波场链/币安链代币合约流动性质押挖矿分红系统开发(开发详情及源码逻辑)

V\TG【ch3nguang】

NFTScan 发展成为 PlatON 网络最大验证者节点之一

NFT Research

NFT NFT\ NFTScan

软件开发全文档归档,开发、管理、实施、运维、服务巡检、信息安全、安全运维

金陵老街

概要设计 详细架构设计文档 软件文档

合约永续交易/秒合约/现货币币交易系统开发/技术应用

V\TG【ch3nguang】

私有网络的安全保障,WorkPlus Meet内网视频会议助力企业高效会议

WorkPlus

打造美团外卖新体验,HarmonyOS SDK持续赋能开发者共赢鸿蒙生态

HarmonyOS开发者

打造企业级门户,WorkPlus助您打造个性化与高效的企业通讯平台

WorkPlus

LineFlow开源:比PyTorch简洁数倍,适用任何框架的NLP数据集处理程序_开源_Yasufumi TANIGUCHI_InfoQ精选文章