写点什么

如何快速上手 AB Testing ?

  • 2020-01-14
  • 本文字数:3664 字

    阅读完需:约 12 分钟

如何快速上手 AB Testing ?

什么是 A/B Testing?

关于 A/B 有很多层的定义,通俗来说,A/B 是一种工具,通过分隔 A 和 B 两个版本,统计数据,进而看哪个版本的数据效果更好,对产品目标更有帮助


在这里我更多想从 A/B 本身的意义来说一下它的定义。


以我们的业务迭代为例,我们会定义产品的业务数据指标(这些指标通常是可以直接和间接反映我们的业务目标的),然后我们在业务迭代中不断提出假设,期望通过做这些假设的改变来提升相对应的业务指标。而在这里 A/B 就是用来衡量我们提出的业务改进假设是否有效的一种方法,从统计学意义上说是一类假设验证的方法


我觉得这样定义的好处是,A/B 不仅仅是一个工具,更多是一种与业务发展融合在一起的迭代思路,并且在 A/B 背后实际有着科学的统计学的依据支撑着,你也会更加关注每一个业务假设是否真的是有效的。


用户增长中最忌讳的是盲目套用其他业务线的增长手段,而忽视了自己业务的分析和推导的过程,凡事是否正确,需要我们测一测才知道。

产品在什么阶段适合 A/B Testing?

  • 对于一个初创项目,产品刚刚孵化,这种时候不太适合做 A/B 测试,因为这个时候我们的目标相对是比较明确的,就是快速形成“原型”产品和大框架,把“产品生下来”,因此也基本上不会有太多抠细节的部分。

  • 而当产品到了一定的阶段,模式已经成型比较稳定,相对处于快速迭代的阶段,就比较适合利用 A/B Testing 来助力业务发展了


A/B Testing 的步骤

说 A/B Testing 的步骤之前,我想说,A/B Testing 实验不是说你做了一次实验拿到结果就再也不用做 A/B 了,它更多是一个不断优化和理解产品以及用户的过程。


因此,这里所说的 A/B Testing 的步骤不是指我们如何在平台上面配置一次 A/B 实验,而是更大范围的,如何用 A/B Testing 优化产品的步骤。


总的来说,业界一般会给 A/B Testing 划分为 8 个步骤



这是我学习看到的 8 阶段 A/B 划分,可以看到我们技术同学最关注的创建 A/B 实验,实际上只是其中的第 4、5 步,而除此之前,我们还有很多工作要做,那么要科学做 A/B 我们究竟每一步应该做些啥呢?我们来看一下。


1. 建立产品漏斗


这一步往往在我们的工作中会被忽略掉,我觉得,不管是业务还是技术同学,我们都有必要了解自己的产品链路以及用户的漏斗,知道了用户从哪里来,我们希望用户去哪里,才能够有准备的做增长。例如用户拉新的流程,它的漏斗大致可以是:



2. 确定产品链路核心指标


在明确了产品的漏斗之后,我们需要明确要观察产品链路中的哪些核心指标。


如果你的关注点仅仅是一个页面,那你可能更多需要细看当前页面的用户指标;如果你关注的产品链路比较长,你应该关注整个链路上各个节点之间的指标。


以上面“用户拉新”的例子来说,我们可能要关注每一个节点的用户量(PV/UV),还要看每一层的转化率(例如: 点击/曝光)等等。


确定了指标之后,我们就需要把这些指标纳入长期的观察中。



3. 观察指标,提出优化假设


接着我们的产品同学就可以根据指标分析当前的业务状况,然后结合需要优化的数据指标,提出相对应的业务假设。这里开始,就有统计学知识入场了。


这里我们说假设实际上包含了两种:


  1. 原假设,又叫零假设、无假设(Null Hypothesis),代表我们希望通过试验结果推翻的假设

  2. 备择假设(Alternative Hypothesis),代表我们希望通过试验结果验证的假设


可以看得出原假设是悲观主义的。为啥要这么分一下,说实在我自己一开始也很懵逼。我们这里先提出这两个概念(原假设、备择假设),他们的作用在后面几步会看到。


假如说我们的场景是:优化页面上面按钮的点击率,而我们的预计做法是加大按钮的尺寸。


那么原假设的表述就是:加大按钮的尺寸,按钮点击率不会有任何变化。


而备择假设的表述则是:加大按钮的尺寸,按钮点击率会有影响(我觉得影响包含提升和降低,不过大多数的讲解中这个假设只会写提升,我理解我们正常不会假设为数据降低,这点可以探讨一下)。


另外要注意的是,在假设检验中,原假设和备择假设有且只有一个成立。


确定了假设,接下来我们就进入实验的设计了。



4. 设计 A/B 实验方案


实验设计上,我们要明确一些信息:


  • 我们要写明,实验目标是什么,包括上面说的假设。

  • 在实验分组上,我们要考虑如何划分分组,是否要有 A/A 对照,要切多少流量来做实验?

  • 另外在投放上,我们的实验要针对谁做?是否要投放在特定的地区?或是投放在特定的端?


另外,A/B 实验中最好每次只做一个“变量”的改变(虽然受限于时间你也可以同时做多个变量,例如经典的奥巴马参选的 A/B 版本海报),这样对于后续的数据分析和拿明确的结论会比较有好处。


5. 开发 A/B 实验


这一步,是我们最熟悉的阶段,一般的项目需求评审都是从这里开始的,开发同学会借助 Runtime SDK 编写 UI 逻辑、分桶逻辑等,这里先不赘述里面的细节。


6. 运行实验


开发完成后,我们就要准备上线了,这时要设定实验运行时的配置,例如:


我们主要需要设定:


  1. 指标的样本量(反过来样本量也决定了实验的运行时长)。

  2. 实验的显著性水平(α)、统计功效(1-β),一般业界普遍设定 α 为 5%,β 为 10%~20%。


为什么要设置显著性水平(α)、统计功效(1-β)?


这是因为,所有的实验,在概率统计学上都是存在误差的,而误差会导致我们做出错误的判断。


这里常见的错误判断包括:


  • 第 I 类错误(弃真错误):原假设为真时拒绝原假设;第 I 类错误的概率记为 α(alpha),对应就是显著性水平值。

  • 第 II 类错误(取伪错误):原假设为假时未拒绝原假设。第 II 类错误的概率记为 β(Beta),取反后(1-β)对应就是统计功效值。


再白话一些,以上面的例子来说:


  • 第一类的错误是指,加大按钮的尺寸,按钮点击率实际没有什么变化,但因为误差,我们认为有变化。

  • 第二类的错误是指,加大按钮的尺寸,按钮点击率实际产生了变化,但因为误差,我们认为没有变化。


这里如果觉得绕,可以多感受几遍。设置好这些,发布完代码后,我们就可以发布实验了。



7. 实验数据分析


我们前面说过: A/B Testing 的统计学本质就是做假设检验。


当然在开始假设检验前,我们要先验证一下,我们的数据本身是正确的。


然后我们就要根据实验的数据看:


  1. 实验显著性是否满足要求?

  2. 实验的结论是否证实了假设对数据的提升?

  3. 实验是否带来了漏斗中其他数据变差?


关于实验的显著性,这里我们还会用到一个 z-test 计算 p 值的方式来进行校验。


p 值表示,我们观察实验样本有多大的概率是产生于随机过程的,p 值越小,我们越有信心认为原假设是不成立的,如果 p 值小于显著性水平(α),则我们可以认为原假设是不成立的。


8. 实验结论


最后,我们根据这次实验的分析结果,总结实验结论。


例如:这次实验我们具体通过做了 xx 提升了 xx 指标,并且没有对其他的指标产生影响,通过这次实验的结论,我们推理出在 xx 场景下,适合使用 xx 方式来提升 xx 指标。


当然如果没有达到预期的目标,我们就要调整策略提出更进一步的优化假设。


这 8 步,有时候我们也会缩减为一个 5 步的循环



总的来说,所做的事情是差不多的。

在电商业务中做 A/B Testing,我们面临什么挑战?

说了这些,我们再来看看目前在电商中做 A/B 测试,我们都面临什么样的挑战?


我个人觉得主要的挑战就是:


A/B 测试直观感觉成本高,业务有接受门槛。


电商业务都讲究跑得快,这点我也和不少同学聊过,其实大家对于接受做 A/B 测试这件事情,感觉不是这么的 buy-in,原因还是直观感觉成本高,开发得开发两(n)个版本,耽误了上线时间。不过讲道理来说,我们不仅仅要追求“跑得快”,还得“方向对”。


相信前面说了这么多,我们可以看到结合 A/B Testing 来做业务,是一个比较科学的过程,有 A/B Testing 我们在业务过程中会更加注重假设求证、数据推导以及验证,同时 A/B 上线相比“一把梭上功能”也可以降低迭代带来的业务风险,甚至结合 A/B 你可以发掘业务中存在的问题,更加了解你的用户的行为,此外通过 A/B 获得的业务的增长经验可以沉淀下来通用化。


另外 A/B 不是一次性的事情,而是一个长期迭代的过程,大家做 A/B 是要以“不断优化”的心态来做,而不是“一次到位”。


从 A/B “平台”的角度来说,要帮助业务解决这些挑战,我们有很多的问题要解


解决 A/B 成本高的问题(这里我们从几个角度来解决):


1.平台的操作效率(是否简单易用),平台工具是否通俗易懂(A/B 那么多统计学的概念的理解成本能否被我们平台侧抹平)。


2.开发更加规范,我们需要从开发 sdk 上规范业务的定制 A/B 开发,提供开发。


3.开发效率提升:


  • 从工程侧,我们可以利用代码脚手架、代码生成等方式来提升效率。

  • 从平台功能上来说,我们可以提供 UI Editor 等之类的工具,把一些“静态配置”类的部分开放给运营和产品,允许他们做改动来做 A/B 实验,减少开发人员自己的投入。


4.A/B 的能力需要融入到其他的流程、平台、系统里面。


未来运营在使用其他平台的时候,不会感觉 A/B 配置是一个割裂的部分,当然这里的方案也是需要我们好好思考的,现在 A/B 的能力要融入到其他平台的成本还是非常高的。


我想这些也是我们接下来一步步需要解决的问题。


本文转载自公众号阿里技术(ID:ali_tech)。


原文链接


https://mp.weixin.qq.com/s/3Lvuja4fDFSiqwyEgdYxlQ


2020-01-14 09:302731

评论

发布
暂无评论
发现更多内容

阿里技术大牛亲自编写,将高难度的Java高并发知识讲解得浅显易懂

了不起的程序猿

系统管理-Linux系统进程管理

Albert Edison

Linux centos 运维 服务器 8月月更

Python 教程之输入输出(6)—— 使用 print() 函数输出

海拥(haiyong.site)

Python 8月月更

基于 OPLG 从 0 到 1 构建统一可观测平台实践

阿里巴巴云原生

阿里云 分布式 云原生 可观测 全链路

Github Actions 实现 Node.js 项目的 CICD 环境搭建

昆吾kw

nginx CI/CD Node Express Github Actions

站在数字经济浪尖:360视觉云探路中小微企业数智转型

脑极体

危险!请马上替换代码中的BeanUtils!!!

JAVA活菩萨

Java 后端 java程序员 大厂技能 大厂实践

架构实战营复盘

Fan

#架构实战营

来学习开源模块化前端框架—Layui【Layui极致轻量前端框架】

恒山其若陋兮

开源 前端框架 签约计划第三季 8月月更

原型链中的函数和对象

掘金安东尼

JavaScript 前端 8月月更

JVM学习之 内存结构

JAVA活菩萨

Java java程序员 大厂技能 大厂实践 秋招

1500字简述 Apache ZooKeeper 的基本原理

wljslmz

Apache zookeeper 分布式 8月月更

阿里架构师力推jvm架构解析文档,把JVM调优实战讲的明明白白

Java工程师

Java JVM GC

Spring(二、配置文件)

开源 bean Spring JPA 8月月更

大算力时代已经到来

吴脑的键客

计算

leetcode 769. Max Chunks To Make Sorted 最多能完成排序的块(中等)

okokabcd

数组 LeetCode 数据结构与算法

使用软引用实现缓存机制

JAVA活菩萨

Java 后端 java程序员 大厂技能 大厂实践

Java “constant string too long” 编译错误

HoneyMoose

发布Android库至MavenCentral详解

JAVA活菩萨

Java 后端 java程序员 大厂技能 大厂实践

Nacos配置中心之动态感知

急需上岸的小谢

8月月更

12条MySQL优化技巧,提速不止十倍!

TimeFriends

8月月更

设备树

贾献华

8月月更

从 VLAN 到 IPVLAN: 聊聊虚拟网络设备及其在云原生中的应用

阿里巴巴云原生

Linux 阿里云 云原生 容器服务 IPVLAN

超强力推!阿里全新微服务突击手册,把所有操作都写出来了|超清PDF

冉然学Java

架构 微服务 java; 消息中间件 微服务框架

我们来聊聊锁升级吧

JAVA活菩萨

Java 后端 java程序员 大厂技能 大厂实践

阿里SpringCloudAlibaba实战小抄(第五版)GitHub独家首发开源

冉然学Java

GitHub 开源 springcloudAlibaba spring-boot

六千字梳理 Node.js 的多进程模型和项目部署流程

昆吾kw

Node Express NGIN pm2

七日算法先导(五)——归并排序,希尔排序

工程师日月

8月月更

Axure9基本交互操作(二)

乔乔

8月月更

C++对象模型和this指针实例分析

CtrlX

c++ 面向对象 后端 代码 8月月更

C++中const关键字的作用总结

桑榆

c++ 8月月更

如何快速上手 AB Testing ?_文化 & 方法_乔福_InfoQ精选文章