写点什么

严选质量数仓建设(三)—— 数仓开发实例

  • 2020-10-09
  • 本文字数:2907 字

    阅读完需:约 10 分钟

严选质量数仓建设(三)—— 数仓开发实例

在之前的两篇文章,我们介绍了数据仓库的基本概念、质量数仓建设过程和使用到的产品。本文将以 Bug 数据开发设计为例,通过实战了解质量数仓建设过程。

数据分层

数据分层,与应用开发中的 mvc 模式一样,数据分层的目的是更好的管理数据,对数据能有一个更加清晰的掌控。数据分层使的数据具有清晰的数据结构,便于进行数据血缘追踪,能够把复杂问题简单化,减少重复开发,屏蔽原始数据的异常和业务的影响。每个企业或组织由于各自业务、规范、目标不尽相同,分层的策略可能会有一些区分,通用的数据分层结构如下图所示。


ODS 层

数据存储操作层,是最接近数据源中数据的一层,数据源中的数据经过 ETL 之后装入本层,一般来讲,为了追溯数据的问题,因此,本层数据一般不做过多的数据清洗工作,原封不动的接入原始数据即可。

DWD 层

数据明细层,该层一般保持和 ODS 层一样的数据粒度,并且提供一定的数据质量保证(统一业务过程、基于业务过程清洗数据,完备数据)。同时,为了提高数据明细层的易用性,该层会将一些维度冗余到事实表中,减少事实表和维度的关联,提高查询效率。

DWS 层

数据服务层,按照业务划分,基于 DWD 层的数据,做一些聚合操作,生成字段比较多的宽表,提升公共指标的复用性,减少重复加工,用于提供后续的业务查询。

DM 层

数据集市层,基于 DW 层数据,根据业务需求实现数据模型,一般会跨多个主题域,主要提供给数据产品和数据分析使用的数据,一般存储在 ES、Redis、HBase 等存储中,供线上系统使用。

DIM 层

维表层,维表层就是所有维度表的集合。

质量数仓开发实例

选择业务过程

业务过程是由组织完成的微观活动,包含以下公共特征:


  • 业务过程通常用行为动词表示,因为他们通常表示业务执行的活动;

  • 业务过程通常由某个操作型系统支撑;

  • 业务过程建立或获取关键性能度量;

  • 业务过程通常由输入激活,产生输出度量。


第一个数仓项目应该选择最为关键的、最易实现(包括数据可用性与质量,以及准备工作等)的业务过程。


在质量数仓建设中,bug 提报及处理是与质量最直接相关的业务过程,数据质量较高,这份数据使用户能够分析已提报的 bug 数据,它们是在何时、由谁、在哪个项目中发现的,严重程度如何,处理花费了多长时间等。

声明粒度

声明粒度意味着精确定义某个事实表的每一行表示什么。事实度量越详细,就越能获得更确定的事实,原子数据能够提供最佳的分析灵活性,维度模型中的细节数据可与 i 适应用户比较随意的查询请求。设计开发的维度模型应该表示由业务过程获取的最详细的原子信息。


也可以定义汇总粒度来表示对原子数据的聚集,但是,较高级别的粒度会限制更细节维度的可能性,无法实现用户下钻细节的需求。


在 bug 提报与处理的业务过程中,最细粒度的数据是 JIRA 用户提报的单个 bug。选择最细粒度的原子信息作为粒度,也能够更容易的检查数据质量。

确定维度

维度要解决的问题是“业务人员如何描述来自业务过程度量事件的数据?”在选择每个维度时,应该列出所有具体的、文本类型的属性以充实每个维度表。


详细的粒度说明确定了事实表的主要维度。在 bug 提报与处理的业务过程中,Bug 的提报日期、解决日期、创建人、所属产品、优先级等都是需要包含的维度属性。

确定事实

设计的最后一步是确认应该将哪些事实放到事实表中。确定事实就是回答 “过程的度量是什么”,典型事实是可加性数值,明显属于不同粒度的事实必须放在不同的事实表中。


设计的最后一步是确认应该将哪些事实放到实施表中。事实必须与粒度相吻合,Jira 系统中收集到的有 bug 数量、bug 修复时长。


此外,还有一些通过计算得到的事实,如在时间维度上进行汇总后得到的每月新增的总 bug 数、每月 bug 的平均修复时长等;这些计算得到的事实,也应该存储在数仓系统当中,避免用户自行计算使用时产生错误的可能性。


而部分只能通过计算得到的不可加事实,如 P0 级 bug 率,只能通过 P0 级 bug 数量除以所有 bug 数量得到,这种不能从任何维度被汇总的事实,称为非可加事实,只能通过 BI 工具计算获得,一般不存储数仓系统数据库中。


上述提到的 bug 数量、bug 修复时长是原子粒度上的事实,属于一个事实表,如下图 1 所示,而计算事实每月新增 bug 数、每月新增 bug 平均修复时长等,则属于在时间周期上的汇总粒度,应属于另一个事实表,除此之外,我们还关心,各个优先级的 bug 占比、修复时长、关闭率等(如下图 2 所示),确定关心的事实及它们所属的事实表,也就完成了我们的事实表设计。


数据入仓

在前面的步骤中,我们已经明确了我们需要分析的数据包含哪些,接下来,我们需要梳理业务数据库,找出所需要的数据在业务库中的存储在哪些表当中,它们之间的关系是怎样的(通常这部分应当由业务库的开发人员提供,而质量数仓中由于对接的大部分业务系统并没有对应的开发,所以需要数据开发同学自行梳理、发现)。


在本实例中,我们经过梳理发现 Jira 中相关的表有 issue 记录表、project 记录表、user 记录表,以及 issue 优先级、状态对应关系、版本关联关系表等,通过 datahub 平台的数据同步功能,将 Jira 数据库中对应的表同步到数仓的 RDB 库中就完成了数据入仓的任务。

数据清洗

接下来要进行数据清洗,数据清洗主要是为了解决数据质量问题,包括数据的完整性、唯一性、权威性、合法性、一致性。


在 Bug 数据开发示例中,相关的用户信息中,部分 jira 用户仅有用户的邮箱前缀,缺乏用户姓名、邮箱、所属团队等信息,在入仓后,我们要通过邮箱前缀,在其他已入仓的表中查找到相关的用户信息,补充到 jira 用户表中,这是解决完整性的问题。


在 Bug 记录中,每一个 bug 都归属某一个项目,而这个项目与我们的业务域是无法对应的,因此,如果需要将项目与业务域对应起来,则需要将项目对应到我们 cmdb 中的服务,所有质量数仓涉及到业务域的数据,都以 cmdb 的数据为准,如果业务系统中没有,则要在清洗时根据映射关系去对应,这是解决权威性问题(要使用最权威可信的数据)。


而数据的唯一性则是指,业务系统中可能存在多条重复记录,在清洗时,需要以主键去重;合法性则是要求字段必须符合一定的规则,如性别必须是“男”、“女”、“保密”中的一种,如出现其他取值,要么剔除、要么设置为默认、要么报警提醒人工处理,避免数据对分析造成影响;一致性则是指同一个指标(或同一个名称),在系统各处应是相同的含义、计算口径。

数据加工

经过前面的步骤,我们已经得到了可靠的源数据,后面则是根据前期需求分析的结果,根据质量数仓的开发规范,建立对应的维度表、事实表(业务入仓的数据表,位于 ods 库,清洗后的明细数据位于 dwd 库,维度数据位于 dim 库,而轻度汇总的数据位于 dws 库);创建任务加工数据写入对应的表,并设置调度规则。


本文的实例,是最简单的一些维度表和事实表的设计,除此之外,数仓建设中还有许多进阶设计方法等待我们一起去发现。


作者简介


婧雯,网易严选资深测试工程师,2014 年毕业于北京理工大学,2017 年加入网易。参与数据产品技术部多个重点产品质量保障工作,建设并完善数据产品部质量保障体系,致力于质量保障工作效能得提升。


相关阅读:


网易严选质量数仓建设(一)—— 数据仓库基本概念


网易严选质量数仓建设(二)—— 质量数仓项目建设及管理


2020-10-09 10:062497

评论

发布
暂无评论
发现更多内容

QUIC在零信任解决方案的落地实践

权说安全

火山引擎DataLeap:助你实现从数据研发1.0到数据研发3.0的跨越

字节跳动数据平台

大数据 数据中台

天猫商品详情接口json 格式返回介绍

tbapi

天猫商品详情数据接口 天猫商品API接口 天猫API接口

光模块是什么?

小齐写代码

每日一题:LeetCode-34. 在排序数组中查找元素的第一个和最后一个位置

Geek_4z9ami

Go 面试 算法 LeetCode 分治

软件测试/测试开发/人工智能丨使用 EvoSuite 自动生成单元测试用例

测试人

人工智能 软件测试

CodeArts 五年磨一剑,深耕信创软件开发工具

华为云PaaS服务小智

ide 全球软件开发大会

Flask已死,FastAPI是未来

Bob Lin

Python django flask FastApi python web

DAPP锁仓质押挖矿系统开发

l8l259l3365

Sui 概览:技术特色与生态发展现状

Footprint Analytics

区块链 Sui Layer 1

Apache Doris 2.0.3 版本正式发布

SelectDB

数据库 大数据 数据湖 OLAP Doris

Flutter Web 和 H5

A __Sun A0 .

flutter HTML5, CSS3 flutter for web

测试用例设计方法六脉神剑——第五剑:化气为型,场景用例破云 | 京东物流技术团队

京东科技开发者

测试 测试用例 场景法

大模型时代下的因果推断

九章云极DataCanvas

智能制造解决方案之智能仓储

天津汇柏科技有限公司

仓储控制系统 解决方案 智能制造 仓储执行系统

记一次生产慢sql索引优化及思考 | 京东云技术团队

京东科技开发者

数据库 SQL优化 MySQL、

开发者能力机制解析,玩转Sermant开发

华为云开源

服务治理 sermant 字节码增强框架

全渠道、全触点、全用户 | 数智化运营赋能企业生意“无边界”

用友BIP

数智营销

第13期 | 用友BIP项目云,助力科研类项目管理实现精智核算

用友BIP

项目管理

Amazon CodeWhisperer 体验

亚马逊云科技 (Amazon Web Services)

人工智能 云上探索实验室 Amazon CodeWhisperer

火山引擎AB测试:企业产品优化主题分享在北京举办

字节跳动数据平台

大数据 对比实验 大数据 A/B测试

WAVE SUMMIT+ 深度学习开发者大会2023 倒计时

飞桨PaddlePaddle

人工智能 深度学习 开发 开发者大会

nginx+lua+redis实现灰度发布 | 京东云技术团队

京东科技开发者

lua nginx redis 服务器

如何利用烛龙和谷歌插件优化CLS(累积布局偏移) | 京东云技术团队

京东科技开发者

前端 页面布局 CLS

千亿级工业大数据的最优方案!智光电气的时序数据库应用

TDengine

tdengine 时序数据库 国产数据库

严选质量数仓建设(三)—— 数仓开发实例_数据库_婧雯_InfoQ精选文章