快手、孩子王、华为等专家分享大模型在电商运营、母婴消费、翻译等行业场景的实际应用 了解详情
写点什么

ECCV 2020 | COCO 视觉挑战赛揭榜,人体关键点检测赛道冠军技术干货分享

  • 2020-09-10
  • 本文字数:2834 字

    阅读完需:约 9 分钟

ECCV 2020 | COCO 视觉挑战赛揭榜,人体关键点检测赛道冠军技术干货分享

近日,计算机视觉三大国际顶级会议之一的 ECCV 2020 如约而至,COCO 作为 ECCV 2020 的重头戏,是人工智能领域最具影响力的图像(物体)识别挑战赛。本次大会,芯翌科技(XForwardAI)拿下了 COCO 视觉挑战赛—人体关键点检测赛道世界第一,在目标检测/实例分割赛道也取得了不错的成绩。



COCO (Common Objects in Context) 数据集是由微软研究院提出的大规模计算机视觉数据集,致力于对常见视觉任务(包括目标检测、实例分割、人体关键点检测、全景分割等)进行分析与评测。与之前的 PASCAL VOC、ImageNet 数据集不同的是,COCO 数据集场景更加复杂、任务更加丰富、更接近实际应用。


基于 COCO 数据集,Facebook 人工智能研究院、谷歌研究院、加州理工学院等联合在每年的 ICCV 或 ECCV 会议上组织举办 COCO 系列视觉挑战赛。历年的 COCO 挑战赛是人工智能领域最具影响力的图像(物体)识别挑战赛,也代表了继 ImageNet 后图像(物体)识别的较高水平,在学术界和工业界具有很高的认可度和知名度。国内外知名的人工智能企业和科研机构如谷歌、Facebook、微软、清华大学、北京大学、商汤科技、旷视科技等均组队参加过历届 COCO 系列比赛。


今年的 COCO 比赛由 ECCV 2020 会议的 COCO-LVIS Joint Workshop 举办,共包括目标检测/实例分割、人体关键点检测、全景分割等赛道。芯翌科技(XForwardAI)算法团队此次参加了前两个赛道。在人体关键点检测赛道,芯翌科技获得了冠军,此次成绩在 test-dev 测评集上 AP 指标为 80.8%,相比较去年冠军方案(AP 指标为 79.2%)有了重大提升;在最终的 test-challenge 测评集上 AP 指标为 77.4%,刷新了该赛道的历史最好成绩。在目标检测/实例分割赛道,芯翌科技也取得了排名前列的成绩。



在人体关键点检测赛道,芯翌科技名列前茅

突破

芯翌科技算法团队在此次夺冠中使用了多项原创性技术创新,包括 CodeBase 可靠性的改善,以及在监督方面让网络更加关注约束信息。



论文地址:


https://arxiv.org/abs/1911.07524


代码地址:


https://github.com/HuangJunJie2017/UDP-Pose

人体姿态估计中无偏的数据处理


如上图所示,人体姿态估计任务中的数据处理主要包含两个环节:数据在不同坐标轴之间的变换和关键点坐标的编码解码。基于此,人体姿态估计任务中数据处理流可以用以下公式进行建模:



而无偏的数据处理则需要满足数据流的输入与输出严格相同,即:



由于评测会对偏差直接作出惩罚,无偏的数据处理对于高精度的人体姿态估计极为重要。此外,潜藏在数据流中的偏差会对研究造成严重的干扰,无偏的数据流是可靠 codebase 必不可少的特征。


芯翌科技的研究人员通过对现有的 codebase 进行推理分析,发现现有 SOTA 工作的数据处理中普遍存在偏差,这些偏差存在于上述两个环节中并相互耦合。一方面直接影响了算法的性能表现,另外一方面为后续的研究埋下了难以察觉的隐患。基于严格的数学推理,研究人员提出用于人体姿态估计无偏的数据处理流作为解决方案,在大幅度提升现有工作的性能表现的同时,为后续研究提供可靠的基础。



论文地址:


https://arxiv.org/abs/2008.07139


在提出 UDP 构建可靠的 CodeBase 之后,芯翌科技的研究人员又对人体姿态估计的性能瓶颈进行了分析。近几年来网络结构的改进是研究的重点,涌现了 SimpleBaseline, MSPN, HRNet, RSN 等一系列具有代表性的工作。而监督方面则一直沿用着位于关键点处的高斯响应图作为监督,此监督设计直观,其有效性也已被广泛证明。然而这种看似完美的监督是否存在缺点呢?答案是肯定的。


研究人员指出人类在定位图像中的人体关键点时使用了两种信息,外观信息和约束信息。外观信息是定位关键点的基础,而约束信息则在定位困难关键点时具有重要的指导意义。约束信息主要包含人体关键点之间固有的相互约束关系以及人体和环境交互形成的约束关系。直观上看,约束信息相比外观信息而言更复杂多样,对于网络而言学习难度更大,这会使得在外观信息充分的情况下,存在约束条件被忽视的可能。研究人员基于此假设,引入信息丢弃的正则化手段,通过在训练过程中以一定的概率丢弃关键点的外观信息,以此避免训练过程过拟合外观信息而忽视约束信息。



各种信息丢弃方法


虽然随机丢弃外观信息可以避免训练过程过拟合外观信息,但是由于外观信息是视觉定位人体关键点的基础,外观信息的缺乏会使得训练前期收敛较慢,网络需要一个更长训练周期才能达到完全收敛。




在实验中,研究人员通过使用多种基线验证了上述假设的合理性以及所提出方法的有效性。有趣的是,在不同的 baseline 上所提出的方法表现惊人的一致,这个一方面反映了这种过拟合外观信息的问题是广泛存在的,修改网络,增加数据并不能解决这个问题。另外一个方面也验证信息丢弃可以有效遏制这个问题。



下图中研究人员可视化了一些网络预测的结果,和标注结果以及没有使用信息丢弃增广时得到的结果进行比较。在外观信息缺乏或者外观信息具有迷惑性的场景中,约束信息显得尤为重要,而使用信息丢弃增广训练得到的模型,在这些情况下对关键点的定位更准确、合理。



结果可视化,从左到右分别是:标注结果、使用信息丢弃增广后的结果和没有使用信息丢弃增广的结果



2020 COCO Keypoint Challenge XForwardAI Road Map


芯翌科技的研究人员以开源的 HRNet CodeBase 为基础,通过技术突破把 HRNet-W32-256x192 配置的得分提升到 76.8AP。由于改进不针对网络结构,后续的增大网络容量和输入分辨率,以及增加训练数据等一系列操作均可带来稳定的提升。


此外因为沿用 top-down 的方法(先检测人,然后对每个 instance 进行关键点定位),人体检测的效果对最后人体姿态估计指标的影响接近线性。在通用目标检测赛道上,芯翌科技最终得分接近 60AP(bbox/test-dev),人体检测结果可为人体关键点检测提供一定程度的优势。


最后研究人员融合了多个关键点检测模型的结果,在 test-dev 上达到 80.8AP,远超历年冠军。在 test-challenge 上得分为 77.4AP,刷新了该赛道上的历史最高成绩的同时夺得该赛道的冠军。

总结与展望

芯翌科技的研究人员针对人体姿态估计问题提出了无偏的数据处理方法以及信息丢弃的正则化方法,在 CodeBase 的可靠性以及算法的鲁棒性两个方面作出突破。凭借技术创新,芯翌科技在 COCO 挑战赛的人体姿态估计赛道上成功夺冠。在未来,芯翌科技将坚持把基础做牢并不断探索和突破人工智能算法的上限。


作者介绍:


黄骏杰,芯翌科技算法工程师,人体姿态估计专家,2020 CVPR 论文一作,2020 年 COCO Challenge 人体关键点检测赛道冠军。专注于人体姿态识别,人脸识别等领域的研究和应用。


黄冠,芯翌科技算法研发总监,算法团队负责人。拥有近十年的深度学习、计算机视觉、自然语言处理相关经验,是国内最早开展深度学习用于目标检测、分割、关键点的一批人。多次带领团队获得 NIST-FRVT、COCO 等国际知名人工智能比赛优异成绩,在人工智能顶级会议和期刊上发表多篇论文,带领算法团队支撑了多个大规模智慧城市和复杂工业场景的业务落地,拥有丰富的学术研究和工业界产业落地研发经验。


2020-09-10 08:002123

评论

发布
暂无评论
发现更多内容

【8.19-8.26】写作社区精彩技术博文回顾

InfoQ写作社区官方

优质创作周报

携手共建云原生生态 阿里云云原生加速器第二次集结圆满结营

阿里巴巴云原生

阿里云 云原生加速器

关于游戏中的实时渲染

3DCAT实时渲染

云计算 元宇宙 实时渲染 实时云渲染 云VR

什么是实时渲染,实时渲染是如何工作的

3DCAT实时渲染

云计算 元宇宙 实时渲染 实时云渲染 云VR

NFT链游系统开发链游Dapp前景

薇電13242772558

dapp NFT

Node.js | 从前端到全栈的必经之路

海底烧烤店ai

node.js 前端 全栈 8月月更

信息化赋能,移动办公系统WorkPlus助推智慧检务工作安全高效发展

WorkPlus

HR拥抱人工智能 沃丰科技AI助力星巴克、泰康保险打造智慧HR中心

sofiya

室外LED显示屏要如何进行合理的散热呢?

Dylan

LED显示屏 户外LED显示屏 led显示屏厂家

云原生赋能智能网联汽车消息处理基础框架构建|车联网系列专题08

EMQ映云科技

车联网 物联网 IoT emq 8月月更

2022秋招面试题,至今已有672名学长靠这套Java八股文成功入职大厂

退休的汤姆

Java 程序员 面经 Java工程师 秋招

数据编排的音乐解法

Alluxio

科普 Alluxio 数据编排 8月月更

瑞云科技荣获全国电子信息行业专精特新“最具创新价值 TOP20”!

3DCAT实时渲染

兆骑科创创新创业服务平台——创新创业的联通之桥

兆骑科创凤阁

2022亚洲视博会圆满落幕,3DCAT荣获“优秀沉浸式视觉解决方案”奖

3DCAT实时渲染

2分钟了解什么是实时渲染

3DCAT实时渲染

云计算 元宇宙 实时渲染 实时云渲染 云VR

Salesforce解散中国团队,国产SaaS软件如何完美替代

sofiya

芒果TV创新研究院联合腾讯云发布“虚拟人直播互动平台”,支持千人沉浸式体验

科技热闻

容器化 | 使用 Alpine 构建 Redis 镜像

RadonDB

redis 镜像 RadonDB 数据库·

自动化运维体系必不可少的系统

穿过生命散发芬芳

自动化运维 8月月更

【计算讲谈社】第十讲|当云计算遇上碳中和

大咖说

云计算 碳中和

敏捷Scrum在中小型企业的落地实施方案

爱吃小舅的鱼

实时云渲染如何助力虚拟展厅

3DCAT实时渲染

云计算 元宇宙 实时渲染 实时云渲染 云VR

“外卖式”售后服务体验来袭 沃丰科技ServiceGo让售后服务更智能

sofiya

新书上市 | 关于推荐系统,这本书包含了你想知道的一切!

图灵教育

【温氏集团】流程驱动的运维自动化在温氏集团的实践

嘉为蓝鲸

运维 AIOPS

新书上市 | 关于推荐系统,这本书包含了你想知道的一切!

图灵社区

多人沉浸式音乐互动,3DCAT实时云渲染新业务场景来袭

3DCAT实时渲染

云计算 元宇宙 实时渲染云

如何把thinkphp5的项目迁移到阿里云函数计算来应对流量洪峰?

Serverless Devs

阿里云 k8s 微服务框架

实时云渲染有哪些特点,主要优势有哪些

3DCAT实时渲染

云计算 元宇宙 实时渲染 实时云渲染 云VR

华为云“828 B2B企业节”,积木易搭云速3D云展与您不见不散

sofiya

ECCV 2020 | COCO 视觉挑战赛揭榜,人体关键点检测赛道冠军技术干货分享_AI&大模型_黄骏杰_InfoQ精选文章