写点什么

Flink SQL 原理及使用入门

  • 2020-03-29
  • 本文字数:2470 字

    阅读完需:约 8 分钟

Flink SQL 原理及使用入门

大数据以离线计算居多,大数据越实时越有价值。数据价值最大化的有效方式就是通过实时流计算技术(Flink/Spark 等)快速把计算结果反馈给用户,提高转化率,保证线下产品的正常运行。而 SQL 是通用语言,容易上手,下面就介绍下 Flink SQL 基本能力。

1. Get Started

Flink SQL 是 Flink 高层 API,语法遵循 ANSI SQL 标准。示例如下


SELECT car_id, MAX(speed), COUNT(speed)FROM drive_dataWHERE speed > 90GROUP BY TUMBLE (proctime, INTERVAL '30' SECOND), car_id
复制代码


Flink SQL 是在 Flink Table API 的基础上发展起来的,与上述示例对应的 Table API 示例如下


table.where('speed > 90)  .window(Tumble over 30.second on 'proctime as 'w)  .groupBy('w, 'car_id)  .select('car_id, 'speed.max, 'speed.count)
复制代码


上述示例使用 Scala 代码,结合隐式转换和中缀表示等 Scala 语法,Table API 代码看起来非常接近 SQL 表达。

2. 架构原理

老版本的 Table API 通过类似链式调用的写法,构造一棵 Table Operator 树,并对各个树节点做代码生成,转化成 Flink 低层 API 调用代码,即 DataStream/DataSet API。


从 2016 年开始,开源社区已经有大量 SQL-on-Hadoop 的成熟解决方案,包括 Apache Hive、Apache Impala、Apache Drill 等等,都依赖 Apache Calcite 提供的 SQL 解析优化能力,Apache Calcite 当时已经是一个非常流行的业界标准 SQL 解析和优化框架。于此同时,随着在实时分析领域中 Flink 的应用场景增加,对 SQL API 的呼声渐高,于是社区开始在 Apache Calcite 的基础上构建新版本的 Table API,并增加 SQL API 支持。



新版本的 Table & SQL API 在原有的 Table API 基础上,由 Calcite 提供 SQL 解析和优化能力,将 Table API 调用和 SQL 查询统一转换成 Calcite 逻辑执行计划(Calcite RelNode 树),并对此进行优化和代码生成,最终同样转化成 Flink DataStream/DataSet API 调用代码。

3. DDL & DML

完整的 SQL 语法由 DDL(data definition language)和 DML(data manipulation language)两部分组成。Flink SQL 目前只支持 DML 语法,而包含数据流定义的 DDL 语法仍需通过代码实现。


国内各大公有云厂商中,华为云和阿里云都提供了基于 Flink SQL 的实时流计算服务,各自定义了一套 DDL 语法,语法大同小异。以华为云为例,数据流定义以CREATE STREAM为关键字,具体的 DDL 写法示例如下


CREATE SOURCE STREAM driver_behavior (car_id STRING, speed INT, collect_time LONG)WITH (  type = "kafka",  kafka_bootstrap_servers = "10.10.10.10:3456,10.10.10.20:3456",  kafka_group_id = "group1",  kafka_topic = "topic1",  encode = "csv",  field_delimiter = ",") TIMESTAMP BY collect_time.ROWTIME;
CREATE SINK STREAM over_speed_warning (message STRING)WITH ( type = "smn", region = "cn-north-1", topic_urn = "urn:smn:cn-north-1:38834633fd6f4bae813031b5985dbdea:warning", message_subject = "title", message_column = "message");
复制代码


DDL 中包含输入数据流和输出数据流定义,描述实时流计算的数据上下游生态组件,在上述例子中,输入流(SOURCE STREAM)类型是 Kafka,WITH子句描述了 Kafka 消费者相关配置。输出流(SINK STREAM)类型是 SMN,是华为云消息通知服务的缩写,用于短信和邮件通知。


数据从 Kafka 流入,向 SMN 服务流出,而中间的数据处理逻辑由 DML 实现,具体的 DML 写法示例如下


INSERT INTO over_speed_warningSELECT "your car speed (" || CAST(speed as CHAR(20)) || ") exceeds the maximum speed."FROM (  SELECT car_id, MAX(speed) AS speed, COUNT(speed) AS overspeed_count  FROM driver_behavior  WHERE speed > 90  GROUP BY TUMBLE (collect_time, INTERVAL '30' SECOND), car_id)WHERE overspeed_count >= 3;
复制代码


以上 DML 语句,描述了在 30 秒内车辆累计超速三次时,向作为输出流的下游 SMN 组件输出告警消息。DML 语句中INSERT INTO关键字后紧接着输出流名,而FROM关键字后紧接着输入流名,SELECT 子句表达输出的内容,WHERE子句表达输出需要满足的过滤条件。上述例子使用到了 SQL 子查询,外层FROM后跟着一整个SELECT子句,为了方便理解,我们也可以把子查询语法转化成等价的临时流定义表达,在华为云实时流计算服务的 DDL 语法中支持了这种特性,与上述 DML 写法等价的示例如下


CREATE TEMP STREAM over_speed_info (car_id STRING, speed INT, overspeed_count INT);
INSERT INTO over_speed_infoSELECT car_id, MAX(speed) AS speed, COUNT(speed) AS overspeed_countFROM driver_behaviorWHERE speed > 90GROUP BY TUMBLE (collect_time, INTERVAL '30' SECOND), car_id;
INSERT INTO over_speed_warningSELECT "your car speed (" || CAST(speed as CHAR(20)) || ") exceeds the maximum speed."FROM over_speed_infoWHERE overspeed_count >= 3;
复制代码


通过TEMP STREAM 语法定义临时流,可以将带有子查询的 SQL 语法平铺表达,串接数据流逻辑,更容易理解。

4. 语法

Flink SQL 的核心部分是 DML 语法,基础的 DML 语法包含笛卡尔积(单表情况下只有 Scan 操作)、选择(Filter)和投影(Projection)三个数据操作部分,三者分别对应FROM子句、WHERE 子句和SELECT子句,这三个部分的顺序代表了 DML 语句的逻辑执行顺序。较为进阶的语法包含聚合、窗口和连接(JOIN)等常用语法,以及排序、限制和集合等非常用语法。下表简单列举 Flink SQL 基础和常用的进阶 DML 语法句式并加以说明,其他语法元素和内建函数等详细内容,可参考Flink SQL文档


  • 基础语法

  • 聚合语法



  • 连接语法


5. 场景

目前 Flink SQL 的应用广泛,可以用在 IoT、车联网、智慧城市、日志分析、ETL、实时大屏、实时告警、实时推荐等等。在 IoT 和车联网等行业对 Flink 有更高的要求,如时间地理函数、CEP SQL、StreamingML 等,各个云厂商都有不同程度的实现,华为云实时流计算在这方面特性最为丰富。


本文转载自 华为云产品与解决方案 公众号。


原文链接:https://mp.weixin.qq.com/s/au-X4obr31ivTuZpuVdlMA


2020-03-29 19:513939

评论

发布
暂无评论
发现更多内容

盘点:2021年最新、最全、最实用的Java岗面试真题,已收录GitHub

Java 架构 面试

因果迷境:为什么我们会问“为什么”?

脑极体

阿里新晋 CNCF TOC 委员张磊:“云原生”为什么对云计算生态充满吸引力?

阿里巴巴云原生

云计算 容器 微服务 云原生 cncf

产品经理训练营第二章作业2

阿波

即使技术再精,面试时一问这个必挂!!

冰河

面试 类加载器 我要进大厂 Java类加载

2021最新发布百度云面经总结:Java并发+Redis+数据库+分布式

比伯

Java 程序员 架构 面试 计算机

学习总结之HTML5剑指前端(建议收藏,图文并茂)

我是哪吒

学习 程序员 面试 大前端 2月春节不断更

所见即所得! iMove 在线执行代码探索

阿里巴巴 开源 大前端 Web框架 逻辑编排

什么是防火墙?

机器学习笔记之:Matrix Matrix Multiplication

Nydia

正点原子DS100拆解全过程-硬件工程师必备

良知犹存

嵌入式

MyBatis专栏 - 进阶(引入外部配置文件, 类型参数设置)

小马哥

Java mybatis 七日更 2月春节不断更

Go Modules v2 及后续版本

Rayjun

Go 语言

Linux Lab 进阶: Uboot 引导程序

贾献华

Linux bootloader Linux Kenel boot

日记 2021年2月5日(周五)

Changing Lin

个人感悟 2月春节不断更

Kubernetes 原生 CI/CD 构建框架 Argo 详解!

字节跳动 Kubernetes 云原生 CI/CD argo

OpenCV简介及其工程应用-游戏色块检测

行者AI

OpenCV

登上 Github 趋势榜,iMove 原理技术大揭秘!

阿里巴巴 开源 大前端 Web框架 逻辑编排

iMove 基于 X6 + form-render 背后的思考

阿里巴巴 开源 大前端 Web框架 逻辑编排

团队中的三种成员

熊斌

学习 管理 2月春节不断更

容器&服务:开篇,压力与资源

程序员架构进阶

容器 服务 七日更 28天写作 2月春节不断更

威联通(NAS)应用篇:自建OwnCloud网盘(百度网盘,拜拜~~~)

BigYoung

NAS 威联通 28天写作 2月春节不断更

F2C能否让前端像运营配置一样开发?

阿里巴巴 开源 大前端 Web框架 逻辑编排

【LeetCode】尽可能使字符串相等

Albert

算法 LeetCode 2月春节不断更

OpenCV--基本的线条操作

IT蜗壳-Tango

七日更 2月春节不断更

从躬身入局到共生入境的做产品

boshi

产品经理 产品设计 七日更

Webpack | 提升构建速度和体积优化的N种方式

梁龙先森

大前端 webpack 2月春节不断更

探寻内部类的奥秘(上)

后台技术汇

2月春节不断更

2 期架构师训练营 - 大作业(二)

云飞扬

架构师训练营第2期

Spring Boot 微服务性能下降九成!使用 Arthas 定位根因

Java架构师迁哥

2021年前端趋势预测

阿里巴巴 开源 大前端 Web框架 逻辑编排

Flink SQL 原理及使用入门_语言 & 开发_华为云产品与解决方案_InfoQ精选文章