写点什么

Flink SQL 原理及使用入门

  • 2020-03-29
  • 本文字数:2470 字

    阅读完需:约 8 分钟

Flink SQL 原理及使用入门

大数据以离线计算居多,大数据越实时越有价值。数据价值最大化的有效方式就是通过实时流计算技术(Flink/Spark 等)快速把计算结果反馈给用户,提高转化率,保证线下产品的正常运行。而 SQL 是通用语言,容易上手,下面就介绍下 Flink SQL 基本能力。

1. Get Started

Flink SQL 是 Flink 高层 API,语法遵循 ANSI SQL 标准。示例如下


SELECT car_id, MAX(speed), COUNT(speed)FROM drive_dataWHERE speed > 90GROUP BY TUMBLE (proctime, INTERVAL '30' SECOND), car_id
复制代码


Flink SQL 是在 Flink Table API 的基础上发展起来的,与上述示例对应的 Table API 示例如下


table.where('speed > 90)  .window(Tumble over 30.second on 'proctime as 'w)  .groupBy('w, 'car_id)  .select('car_id, 'speed.max, 'speed.count)
复制代码


上述示例使用 Scala 代码,结合隐式转换和中缀表示等 Scala 语法,Table API 代码看起来非常接近 SQL 表达。

2. 架构原理

老版本的 Table API 通过类似链式调用的写法,构造一棵 Table Operator 树,并对各个树节点做代码生成,转化成 Flink 低层 API 调用代码,即 DataStream/DataSet API。


从 2016 年开始,开源社区已经有大量 SQL-on-Hadoop 的成熟解决方案,包括 Apache Hive、Apache Impala、Apache Drill 等等,都依赖 Apache Calcite 提供的 SQL 解析优化能力,Apache Calcite 当时已经是一个非常流行的业界标准 SQL 解析和优化框架。于此同时,随着在实时分析领域中 Flink 的应用场景增加,对 SQL API 的呼声渐高,于是社区开始在 Apache Calcite 的基础上构建新版本的 Table API,并增加 SQL API 支持。



新版本的 Table & SQL API 在原有的 Table API 基础上,由 Calcite 提供 SQL 解析和优化能力,将 Table API 调用和 SQL 查询统一转换成 Calcite 逻辑执行计划(Calcite RelNode 树),并对此进行优化和代码生成,最终同样转化成 Flink DataStream/DataSet API 调用代码。

3. DDL & DML

完整的 SQL 语法由 DDL(data definition language)和 DML(data manipulation language)两部分组成。Flink SQL 目前只支持 DML 语法,而包含数据流定义的 DDL 语法仍需通过代码实现。


国内各大公有云厂商中,华为云和阿里云都提供了基于 Flink SQL 的实时流计算服务,各自定义了一套 DDL 语法,语法大同小异。以华为云为例,数据流定义以CREATE STREAM为关键字,具体的 DDL 写法示例如下


CREATE SOURCE STREAM driver_behavior (car_id STRING, speed INT, collect_time LONG)WITH (  type = "kafka",  kafka_bootstrap_servers = "10.10.10.10:3456,10.10.10.20:3456",  kafka_group_id = "group1",  kafka_topic = "topic1",  encode = "csv",  field_delimiter = ",") TIMESTAMP BY collect_time.ROWTIME;
CREATE SINK STREAM over_speed_warning (message STRING)WITH ( type = "smn", region = "cn-north-1", topic_urn = "urn:smn:cn-north-1:38834633fd6f4bae813031b5985dbdea:warning", message_subject = "title", message_column = "message");
复制代码


DDL 中包含输入数据流和输出数据流定义,描述实时流计算的数据上下游生态组件,在上述例子中,输入流(SOURCE STREAM)类型是 Kafka,WITH子句描述了 Kafka 消费者相关配置。输出流(SINK STREAM)类型是 SMN,是华为云消息通知服务的缩写,用于短信和邮件通知。


数据从 Kafka 流入,向 SMN 服务流出,而中间的数据处理逻辑由 DML 实现,具体的 DML 写法示例如下


INSERT INTO over_speed_warningSELECT "your car speed (" || CAST(speed as CHAR(20)) || ") exceeds the maximum speed."FROM (  SELECT car_id, MAX(speed) AS speed, COUNT(speed) AS overspeed_count  FROM driver_behavior  WHERE speed > 90  GROUP BY TUMBLE (collect_time, INTERVAL '30' SECOND), car_id)WHERE overspeed_count >= 3;
复制代码


以上 DML 语句,描述了在 30 秒内车辆累计超速三次时,向作为输出流的下游 SMN 组件输出告警消息。DML 语句中INSERT INTO关键字后紧接着输出流名,而FROM关键字后紧接着输入流名,SELECT 子句表达输出的内容,WHERE子句表达输出需要满足的过滤条件。上述例子使用到了 SQL 子查询,外层FROM后跟着一整个SELECT子句,为了方便理解,我们也可以把子查询语法转化成等价的临时流定义表达,在华为云实时流计算服务的 DDL 语法中支持了这种特性,与上述 DML 写法等价的示例如下


CREATE TEMP STREAM over_speed_info (car_id STRING, speed INT, overspeed_count INT);
INSERT INTO over_speed_infoSELECT car_id, MAX(speed) AS speed, COUNT(speed) AS overspeed_countFROM driver_behaviorWHERE speed > 90GROUP BY TUMBLE (collect_time, INTERVAL '30' SECOND), car_id;
INSERT INTO over_speed_warningSELECT "your car speed (" || CAST(speed as CHAR(20)) || ") exceeds the maximum speed."FROM over_speed_infoWHERE overspeed_count >= 3;
复制代码


通过TEMP STREAM 语法定义临时流,可以将带有子查询的 SQL 语法平铺表达,串接数据流逻辑,更容易理解。

4. 语法

Flink SQL 的核心部分是 DML 语法,基础的 DML 语法包含笛卡尔积(单表情况下只有 Scan 操作)、选择(Filter)和投影(Projection)三个数据操作部分,三者分别对应FROM子句、WHERE 子句和SELECT子句,这三个部分的顺序代表了 DML 语句的逻辑执行顺序。较为进阶的语法包含聚合、窗口和连接(JOIN)等常用语法,以及排序、限制和集合等非常用语法。下表简单列举 Flink SQL 基础和常用的进阶 DML 语法句式并加以说明,其他语法元素和内建函数等详细内容,可参考Flink SQL文档


  • 基础语法

  • 聚合语法



  • 连接语法


5. 场景

目前 Flink SQL 的应用广泛,可以用在 IoT、车联网、智慧城市、日志分析、ETL、实时大屏、实时告警、实时推荐等等。在 IoT 和车联网等行业对 Flink 有更高的要求,如时间地理函数、CEP SQL、StreamingML 等,各个云厂商都有不同程度的实现,华为云实时流计算在这方面特性最为丰富。


本文转载自 华为云产品与解决方案 公众号。


原文链接:https://mp.weixin.qq.com/s/au-X4obr31ivTuZpuVdlMA


2020-03-29 19:513618

评论

发布
暂无评论
发现更多内容

你需要知道的webpack高频面试题

Geek_02d948

webpack

带你全面了解Gateway

好程序员IT教育

Spring Cloud Gateway SpringCloud Gateway

面向智慧城市的GIS框架

tjn

GIS 可视化 11月月更

JAVA concurrency -- AQS 源码详解

骑牛上青山

Java 源码

哪些前端学习方法对小白比较有用?

小谷哥

如何在大促中做好系统高可用

阿里巴巴云原生

阿里云 微服务 高可用 云原生网关

Docker安装minio(CentOS7)

蜗牛也是牛

web前端培训上海学习好吗

小谷哥

5 分钟教你搭建「视频动作分类」系统

Zilliz

人工智能 计算机视觉 Towhee 视频动作分类

启科量子 QuSprout 正式开源

启科量子开发者官方号

开源 量子计算 量子编程

直播预告|全闪文件存储在 AI 大数据领域的前沿应用

焱融科技

云计算 分布式系统 高性能 文件存储 全闪存储

阿里内部高并发核心编程笔记:多线程、锁、JMM、JUC、设计模式

程序知音

高并发 java架构 后端技术 高并发架构

java学习后该怎么培养自主学习能力

小谷哥

大数据培训学习后,就业不好就业

小谷哥

专为实时而生 — GreptimeDB 现已在 GitHub 正式开源

Greptime 格睿科技

开源 分布式 云原生 时序数据库 存算分离

Go语言—基本输入输出包的使用

良猿

Go golang 后端 11月月更

web前端培训学习需要注意什么

小谷哥

技术贴 | Rocksdb 中 Memtable 源码解析

KaiwuDB

数据库

eBPF 实践 -- 网络可观测

观测云

系统运维利器,百万服务器运维实战总结!一文了解最新版SysAK|龙蜥技术

OpenAnolis小助手

Linux 开源 运维 龙蜥社区 SysAK

鼎医信息加入PolarDB开源数据库社区

阿里云数据库开源

阿里云 polarDB PolarDB-X 阿里云数据库 PolarDB for PostgreSQL

惊艳华为PocketS发布会! 杰美特旗下高端品牌决色推出首款“月光宝壳”

科技热闻

B站疯传 Java面试题,24小时删

程序知音

Java java面试 java架构 后端技术 Java面试八股文

【简历优化】如何写好项目的亮点难点?项目经历怎么写最好?

王中阳Go

高效工作 学习方法 面试 简历模板 11月月更

搭建企业镜像仓库~Harbor

蜗牛也是牛

STL迭代器失效问题

Maybe_fl

量化交易炒币机器人开发合约策略

薇電13242772558

量化策略

数据挖掘、机器学习、深度学习的区别

九章云极DataCanvas

数据挖掘 机器学习 深度学习

微博评论高可用高性能计算架构设计

Jack

架构实战训练营9期

华为新机到手升级HarmonyOS 3,畅享多设备高效互联协同

Geek_2d6073

【高并发全彩版小册】阿里内部大佬用7部分讲懂!百亿级高并发系统

程序知音

Java 高并发 java架构 后端技术 高并发架构

Flink SQL 原理及使用入门_语言 & 开发_华为云产品与解决方案_InfoQ精选文章