写点什么

通用视觉的 GPT 时刻来临?智源推出通用分割模型 SegGPT,可「分割一切 」

  • 2023-04-09
    北京
  • 本文字数:1663 字

    阅读完需:约 5 分钟

通用视觉的GPT时刻来临?智源推出通用分割模型SegGPT,可「分割一切 」

ChatGPT 引发了语言大模型狂潮,AI 另一个重大领域 — 视觉的 GPT 时刻何时到来?


4 月 8 日,智源研究院视觉团队推出通用分割模型 SegGPT(Segment Everything In Context)——首个利用视觉提示(prompt)完成任意分割任务的通用视觉模型。

 

SegGPT 与 Meta AI 图像分割基础模型 SAM 同时发布,两者的差异在于:


• SegGPT“一通百通”:给出一个或几个示例图像和意图掩码,模型就能 get 用户意图,“有样学样”地完成类似分割任务。用户在画面上标注识别一类物体,即可批量化识别分割同类物体,无论是在当前画面还是其他画面或视频环境中。


• SAM“一触即通”:通过一个点或边界框,在待预测图片上给出交互提示,识别分割画面上的指定物体。

无论是“一触即通”还是“一通百通”,都意味着视觉模型已经“理解”了图像结构。SAM 精细标注能力与 SegGPT 的通用分割标注能力相结合,能把任意图像从像素阵列解析为视觉结构单元,像生物视觉那样理解任意场景,通用视觉 GPT 曙光乍现。

 


论文地址:https://arxiv.org/abs/2304.03284

代码地址:https://github.com/baaivision/Painter

Demo:https://huggingface.co/spaces/BAAI/SegGPT

 

SegGPT 是智源通用视觉模型 Painter 的衍生模型,针对分割一切物体的目标做出优化。SegGPT 训练完成后无需微调,只需提供示例即可自动推理并完成对应分割任务,包括图像和视频中的实例、类别、零部件、轮廓、文本、人脸等等。

 

该模型具有以下优势能力:


1. 通用能力:SegGPT 具有上下文推理能力,模型能够根据提供的分割示例(prompt),对预测进行自适应的调整,实现对“everything”的分割,包括实例、类别、零部件、轮廓、文本、人脸、医学图像等。

2. 灵活推理能力:支持任意数量的 prompt;支持针对特定场景的 tuned prompt;可以用不同颜色的 mask 表示不同目标,实现并行分割推理。

3. 自动视频分割和追踪能力:以第一帧图像和对应的物体掩码作为上下文示例,SegGPT 能够自动对后续视频帧进行分割,并且可以用掩码的颜色作为物体的 ID,实现自动追踪。

 

案例展示

 

1. 标注出一个画面中的彩虹(上图),可批量化分割其他画面中的彩虹(下图)



2. 作者在广泛的任务上对 SegGPT 进行了评估,包括少样本语义分割、视频对象分割、语义分割和全景分割。下图中具体展示了 SegGPT 在实例、类别、零部件、轮廓、文本和任意形状物体上的分割结果。




3. 用画笔大致圈出行星环带(上图),在预测图中准确输出目标图像中的行星环带(下图)。

 



4. SegGPT 能够根据用户提供的宇航员头盔掩码这一上下文(上图),在新的图片中预测出对应的宇航员头盔区域(下图)。




训练方法

 

SegGPT 将不同的分割任务统一到一个通用的上下文学习框架中,通过将各类分割数据转换为相同格式的图像来统一各式各样的数据形式。


具体来说,SegGPT 的训练被定义为一个上下文着色问题,对于每个数据样本都有随机的颜色映射。目标是根据上下文完成各种任务,而不是依赖于特定的颜色。训练后,SegGPT 可以通过上下文推理在图像或视频中执行任意分割任务,例如实例、类别、零部件、轮廓、文本等。



Test-time techniques

 

如何通过 test-time techniques 解锁各种能力是通用模型的一大亮点。SegGPT 论文中提出了多个技术来解锁和增强各类分割能力,比如下图所示的不同的 context ensemble 方法。所提出的 Feature Ensemble 方法可以支持任意数量的 prompt 示例,实现丰俭由人的推理效果。

 


此外,SegGPT 还支持对特定场景优化专用 prompt 提示。对于针对性的使用场景,SegGPT 可以通过 prompt tuning 得到对应 prompt,无需更新模型参数来适用于特定场景。比如,针对某一数据集自动构建一个对应的 prompt,或者针对一个房间来构建专用 prompt。如下图所示:

 


结果展示

 

模型只需少数 prompt 示例,在 COCO 和 PASCAL 数据集上取得最优性能。SegGPT 显示出强大的零样本场景迁移能力,比如在少样本语义分割测试集 FSS-1000 上,在无需训练的情况下取得 state-of-the-art 性能。




无需视频训练数据,SegGPT 可直接进行视频物体分割,并取得和针对视频物体分割专门优化的模型相当的性能。



以下是基于 tuned prompt 在语义分割和实例分割任务上的效果展示:



2023-04-09 12:566885
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 545.5 次阅读, 收获喜欢 1978 次。

关注

评论 1 条评论

发布
用户头像
謝謝分享。
2023-04-10 13:43 · 中国香港
回复
没有更多了
发现更多内容

测试开发 | 人工智能的未来发展:科技新时代的奇迹之旅

测吧(北京)科技有限公司

测试

软件测试/测试开发/人工智能 | 测试管理核心问题,提升管理实力!

测试人

人工智能 软件测试 测试开发

E往无前 | 腾讯云大数据ES日志轻接入和免运维最佳实践

腾讯云大数据

ES

独家好书丨《智算时代的容器技术演进与实践》免费下载

阿里巴巴云原生

阿里云 云原生 容器服务

产品破局思考:一个思维,一种策略

菜根老谭

我们为什么要标准定价?如何定价?

菜根老谭

产品经理 产品标准化

MegEngine 优化 dataloader 使用体验!data monitor 帮助更好定位性能瓶颈

MegEngineBot

性能优化 Data 开源框架

火热的低代码,蕴藏怎样的机会和挑战?

互联网工科生

软件开发 低代码开发 JNPF

测试开发 | 数字化创新在文化保护中的崭新探索

测吧(北京)科技有限公司

测试

大模型之提示工程的使用与总结 主赛道:技术人的 2023 总结

Echo_Wish

技术 年度总结 大模型 2023 提示工程

软件测试/测试管理圆桌讨论会 | 解锁测试管理的核心问题,提升您的管理实力!

霍格沃兹测试开发学社

产品经理该不该设计数据库表?

菜根老谭

每日一题:LeetCode-394. 字符串解码

Geek_4z9ami

Go 算法 递归 LeetCode 字符串

文心一言 VS 讯飞星火 VS chatgpt (160)-- 算法导论12.4 2题

福大大架构师每日一题

福大大架构师每日一题

大模型实践 | 为慧眼智能可观测平台插上ChatInsight的翅膀

网易数帆

可观测性 网易 大模型 AIGC ChatInsight

Google 沙盒效应是什么?网站如何避免谷歌沙盒!

九凌网络

【FAQ】运动健康服务云侧数据常见问题及解答

HarmonyOS SDK

BMF 开箱体验 开源赛道 1:高效视频处理

Echo_Wish

Python 视频处理 开源赛道1 BMF 高效视频处理

【写作训练营打卡|10】内容创作方式

华为云多活高可用服务MAS荣获“2023年香港星光奖“

华为云PaaS服务小智

云计算 华为云

你需要的圣诞祝福模板都在这里了!过不过圣诞都能用!

九凌网络

用AI为AI PC打造最强内核,英特尔是怎么做到的?

E科讯

支持GPU虚拟化的云桌面厂家有哪些?

青椒云云电脑

云桌面 云桌面厂家

KubeWharf:云原生操作系统引领大规模分布式应用的新时代

熬夜磕代码、

深入解读ReAct框架

Bob Lin

AI Python3 openai GPT-4 #LangChain

通用视觉的GPT时刻来临?智源推出通用分割模型SegGPT,可「分割一切 」_AI&大模型_刘燕_InfoQ精选文章