写点什么

为什么说 Prometheus 是足以取代 Zabbix 的监控神器?

  • 2019-10-05
  • 本文字数:8927 字

    阅读完需:约 29 分钟

为什么说Prometheus是足以取代Zabbix的监控神器?

本文由 dbaplus 社群授权转载。

一、简介

Kubernetes 自从 2012 年开源以来便以不可阻挡之势成为容器领域调度和编排的领头羊,Kubernetes 是 Google Borg 系统的开源实现,于此对应 Prometheus 则是 Google BorgMon 的开源实现。Prometheus 是由 SoundCloud 开发的开源监控报警系统和时序列数据库。从字面上理解,Prometheus 由两个部分组成,一个是监控报警系统,另一个是自带的时序数据库(TSDB)。


2016 年,由 Google 发起的 Linux 基金会旗下的原生云基金会(Cloud Native Computing Foundation)将 Prometheus 纳入其第二大开源项目。Prometheus 在开源社区也十分活跃,在 GitHub 上拥有两万多 Star,并且系统每隔一两周就会有一个小版本的更新。

二、各种监控工具对比

其实,在 Prometheus 之前市面已经出现了很多的监控系统,如 Zabbix、Open-Falcon、Nagios 等。那么 Prometheus 和这些监控系统有啥异同呢?我们先简单回顾一下这些监控系统。

1、Zabbix

Zabbix 是由 Alexei Vladishev 开源的分布式监控系统,支持多种采集方式和采集客户端,同时支持 SNMP、IPMI、JMX、Telnet、SSH 等多种协议,它将采集到的数据存放到数据库中,然后对其进行分析整理,如果符合告警规则,则触发相应的告警。



Zabbix 核心组件主要是 Agent 和 Server,其中 Agent 主要负责采集数据并通过主动或者被动的方式采集数据发送到 Server/Proxy,除此之外,为了扩展监控项,Agent 还支持执行自定义脚本。Server 主要负责接收 Agent 发送的监控信息,并进行汇总存储,触发告警等。


Zabbix Server 将收集的监控数据存储到 Zabbix Database 中。Zabbix Database 支持常用的关系型数据库,如果 MySQL、PostgreSQL、Oracle 等,默认是 MySQL,并提供 Zabbix Web 页面(PHP 编写)数据查询。


Zabbix 由于使用了关系型数据存储时序数据,所以在监控大规模集群时常常在数据存储方面捉襟见肘。所以从 Zabbix 4.2 版本后开始支持 TimescaleDB 时序数据库,不过目前成熟度还不高。

2、Open-Falcon


Open-Falcon 是小米开源的企业级监控工具,用 Go 语言开发而成,包括小米、滴滴、美团等在内的互联网公司都在使用它,是一款灵活、可扩展并且高性能的监控方案,主要组件包括了:


1)Falcon-agent 是用 Go 语言开发的 Daemon 程序,运行在每台 Linux 服务器上,用于采集主机上的各种指标数据,主要包括 CPU、内存、磁盘、文件系统、内核参数、Socket 连接等,目前已经支持 200 多项监控指标。并且,Agent 支持用户自定义的监控脚本。


2)Hearthbeat server 简称 HBS 心跳服务,每个 Agent 都会周期性地通过 RPC 方式将自己的状态上报给 HBS,主要包括主机名、主机 IP、Agent 版本和插件版本,Agent 还会从 HBS 获取自己需要执行的采集任务和自定义插件。


3)Transfer 负责接收 Agent 发送的监控数据,并对数据进行整理,在过滤后通过一致性 Hash 算法发送到 Judge 或者 Graph。


4)Graph 是基于 RRD 的数据上报、归档、存储组件。Graph 在收到数据以后,会以 rrdtool 的数据归档方式来存储,同时提供 RPC 方式的监控查询接口。


5)Judge 告警模块,Transfer 转发到 Judge 的数据会触发用户设定的告警规则,如果满足,则会触发邮件、微信或者回调接口。这里为了避免重复告警引入了 Redis 暂存告警,从而完成告警的合并和抑制。


6)Dashboard 是面向用户的监控数据查询和告警配置界面。

3、Nagios


Nagios 原名为 NetSaint,由 Ethan Galstad 开发并维护。Nagios 是一个老牌监控工具,由 C 语言编写而成,主要针对主机监控(CPU、内存、磁盘等)和网络监控(SMTP、POP3、HTTP 和 NNTP 等),当然也支持用户自定义的监控脚本。


它还支持一种更加通用和安全的采集方式 NREP(Nagios Remote Plugin Executor),它首先在远端启动一个 NREP 守护进程,用于在远端主机上面运行检测命令,在 Nagios 服务端用 check nrep 的 plugin 插件通过 SSL 对接到 NREP 守护进程执行相应的监控行为。相比 SSH 远程执行命令的方式,这种方式更加安全。

4、Prometheus


Prometheus 是由 SoundCloud 开发的开源监控报警系统和时序列数据库。Prometheus 的基本原理是通过 HTTP 周期性抓取被监控组件的状态,任意组件只要提供对应的 HTTP 接口并且符合 Prometheus 定义的数据格式,就可以接入 Prometheus 监控。


Prometheus Server 负责定时在目标上抓取 metrics(指标)数据并保存到本地存储里面。Prometheus 采用了一种 Pull(拉)的方式获取数据,不仅降低客户端的复杂度,客户端只需要采集数据,无需了解服务端情况,而且服务端可以更加方便的水平扩展。


如果监控数据达到告警阈值 Prometheus Server 会通过 HTTP 将告警发送到告警模块 alertmanger,通过告警的抑制后触发邮件或者 webhook。Prometheus 支持 PromQL 提供多维度数据模型和灵活的查询,通过监控指标关联多个 tag 的方式,将监控数据进行任意维度的组合以及聚合。

5、综合对比


1)综合对比如上面的表格,从开发语言上看,为了应对高并发和快速迭代的需求,监控系统的开发语言已经慢慢从 C 语言转移到 Go。不得不说,Go 凭借简洁的语法和优雅的并发,在 Java 占据业务开发,C 占领底层开发的情况下,准确定位中间件开发需求,在当前开源中间件产品中被广泛应用。


2)从系统成熟度上看,Zabbix 和 Nagios 都是老牌的监控系统:Nagios 是在 1999 年出现的,Zabbix 是在 1998 年出现的,系统功能比较稳定,成熟度较高。而 Prometheus 和 Open-Falcon 都是最近几年才诞生的,虽然功能还在不断迭代更新,但站在巨人的肩膀之上,在架构设计上借鉴了很多老牌监控系统的经验;


3)从系统扩展性方面看,Zabbix 和 Open-Falcon 都可以自定义各种监控脚本,并且 Zabbix 不仅可以做到主动推送,还可以做到被动拉取,Prometheus 则定义了一套监控数据规范,并通过各种 exporter 扩展系统采集能力。


4)从数据存储方面来看,Zabbix 采用关系数据库保存,这极大限制了 Zabbix 采集的性能,Nagios 和 Open-Falcon 都采用 RDD 数据存储,Open-Falcon 还加入了一致性 hash 算法分片数据,并且可以对接到 OpenTSDB,而 Prometheus 自研一套高性能的时序数据库,在 V3 版本可以达到每秒千万级别的数据存储,通过对接第三方时序数据库扩展历史数据的存储;


5)从配置复杂度上看,Prometheus 只有一个核心 server 组件,一条命令便可以启动,相比而言,其他系统配置相对麻烦,尤其是 Open-Falcon。


6)从社区活跃度上看,目前 Zabbix 和 Nagios 的社区活跃度比较低,尤其是 Nagios,Open-Falcon 虽然也比较活跃,但基本都是国内的公司参与,Prometheus 在这方面占据绝对优势,社区活跃度最高,并且受到 CNCF 的支持,后期的发展值得期待;


7)从容器支持角度看,由于 Zabbix 和 Nagios 出现得比较早,当时容器还没有诞生,自然对容器的支持也比较差。Open-Falcon 虽然提供了容器的监控,但支持力度有限。Prometheus 的动态发现机制,不仅可以支持 swarm 原生集群,还支持 Kubernetes 容器集群的监控,是目前容器监控最好解决方案。Zabbix 在传统监控系统中,尤其是在服务器相关监控方面,占据绝对优势。而 Nagios 则在网络监控方面有广泛应用,伴随着容器的发展,Prometheus 开始成为主导及容器监控方面的标配,并且在未来可见的时间内被广泛应用。


总体来说,对比各种监控系统的优劣,Prometheus 可以说是目前监控领域最锋利的“瑞士军刀”了。

三、Prometheus 功能介绍

下图是 Prometheus 整体架构图。左侧是各种数据源主要是各种符合 Prometheus 数据格式的 exporter,除此之外为了支持推送数据的 Agent,可以通过 Pushgateway 组件,将 Push 转化为 Pull。Prometheus 甚至可以从其它的 Prometheus 获取数据,后面介绍联邦的时候详细介绍。



图片的上侧是服务发现,Prometheus 支持监控对象的自动发现机制,从而可以动态获取监控对象,虽然 Zabbix 和 Open-Falcon 也支持动态发现机制,但 Prometheus 支持最完善。


图片中间是核心,通过 Retrieval 模块定时拉取数据,通过 Storage 模块保存数据。PromQL 是 Prometheus 提供的查询语法,PromQL 通过解析语法树,查询 Storage 模块获取监控数据。图片右侧是告警和页面展现,页面查看除了 Prometheus 自带的 webui,还可以通过 grafana 等组件查询 Prometheus 监控数据。


Prometheus 指标格式分为两个部分:一是指标名称,另一个是指标标签。格式如下:


<metric name>{<label name>=<label value>, ...}
复制代码


标签可体现指标的维度特征,例如,对于指标 http_request_total,可以有{status=“200”, method=“POST”}和{status=“200”, method=“GET”}这两个标签。在需要分别获取 GET 和 POST 返回 200 的请求时,可分别使用上述两种指标;在需要获取所有返回 200 的请求时,可以通过 http_request_total{status=“200”}完成数据的聚合,非常便捷和通用。


Prometheus 指标类型有四种:


1)Counter(计数器):计数统计,累计多长或者累计多少次等。它的特点是只增不减,譬如 HTTP 访问总量;


2)Gauge(仪表盘):数据是一个瞬时值,如果当前内存用量,它随着时间变化忽高忽低。


如果需要了解某个时间段内请求的响应时间,通常做法是使用平均响应时间,但这样做无法体现数据的长尾效应。例如,一个 HTTP 服务器的正常响应时间是 30ms,但有很少几次请求耗时 3s,通过平均响应时间很难甄别长尾效应,所以 Prometheus 引入了 Histogram 和 Summary。


3)Histogram(直方图):服务端分位,不同区间内样本的个数,譬如班级成绩,低于 60 分的 9 个,低于 70 分的 10 个,低于 80 分的 50 个。


4)Summary(摘要):客户端分位,直接在客户端通过分位情况,还是用班级成绩举例:0.8 分位的是,80 分,0.9 分为 85 分,0.99 分为的是 98 分。



Prometheus 通过 HTTP 接口的方式从各种客户端获取数据,这些客户端必须符合 Prometheus 监控数据格式,通常由两种方式,一直是侵入式埋点监控,通过在客户端集成如果 Kubernetes API 直接通过引入 Prometheus go client,提供/metrics 接口查询 kubernetes API 各种指标。


另一种是通过 exporter 方式,在外部将原来各种中间件的监控支持转化为 Prometheus 的监控数据格式,如 redis exporter 将 reids 指标转化为 Prometheus 能够识别的 HTTP 请求。


Prometheus 并没有采用 json 的数据格式,而是采用 text/plain 纯文本的方式 ,这是它的特殊之处。


HTTP 返回 Header 和 Body 如上图所示,指标前面两行 #是注释,标识指标的含义和类型。指标和指标的值通过空格分割,开发者通常不需要自己拼接这种个数的数据, Prometheus 提供了各种语言的 SDK 支持。



Prometheus 为了支持各种中间件以及第三方的监控提供了 exporter,大家可以把它理解成监控适配器,将不同指标类型和格式的数据统一转化为 Prometheus 能够识别的指标类型。


譬如 Node exporter 主要通过读取 linux 的/proc 以及/sys 目录下的系统文件获取操作系统运行状态,reids exporter 通过 reids 命令行获取指标,mysql exporter 通过读取数据库监控表获取 mysql 的性能数据。他们将这些异构的数据转化为标准的 Prometheus 格式,并提供 HTTP 查询接口。



Prometheus 提供了两种数据持久化方式:一种是本地存储,通过 Prometheus 自带的 tsdb(时序数据库),将数据保存到本地磁盘,为了性能考虑,建议使用 SSD。但本地存储的容量毕竟有限,建议不要保存超过一个月的数据。Prometheus 本地存储经过多年改进,自 Prometheus 2.0 后提供的 V3 版本 tsdb 性能已经非常高,可以支持单机每秒 1000w 个指标的收集。


另一种是远端存储,适用于大量历史监控数据的存储和查询。通过中间层的适配器的转化,Prometheus 将数据保存到远端存储。适配器实现 Prometheus 存储的 remote write 和 remote read 接口并把数据转化为远端存储支持的数据格式。目前,远端存储主要包括 OpenTSDB、InfluxDB、Elasticsearch、M3db、Kafka 等,其中 M3db 是目前非常受欢迎的后端存储。



和关系型数据库的 SQL 类似,Prometheus 也内置了数据查询语言 PromQL,它提供对时间序列数据丰富的查询,聚合以及逻辑运算的能力。一条 PromQL 主要包括了指标名称、过滤器以及函数和参数。指标可以进行数据运算,包括+ (加法)、- (减法)、* (乘法)、/ (除法)、% (求余)、^ (幂运算),聚合函数包括了:sum (求和)、min (最小值)、max (最大值)、avg (平均值)、stddev (标准差)、count (计数)、topk (前 n 条)、quantile (分布统计)等。查询数据通过 HTTP GET 请求发送 PromQL 查询语句。形式如:


curl 'http://Prometheus:9090/api/v1/query?query=up&time=2015-07-01T20:10:51.781Z'
复制代码


其中 query 参数就是一条 PromQL 表达式。除此之外还支持范围查询 query_range,需要额外添加 start(起始时间)、end(结束时间)、step(查询步长)这三个参数。无论是 Prometheus 自带的 webui 还可以通过 grafana,他们本质上都是通过 HTTP 发送 PromQL 的方式查询 Prometheus 数据。整个解析流程如下所示:



当 Prometheus 接收请求后,通过 PromQL 引擎解析 PromQL,确定查询时间序列和查询时间范围,通过 tsdb 接口获取对应数据块,最后根据聚合函数处理监控数据并返回。



Prometheus 告警配置也是通过 yaml 文件配置,核心是上面的 expr 参数(告警规则)和查询一样也是一个 PromQL 表达式。for 代表持续时间,如果在 for 时间内持续触发,Prometheus 才发出告警至 alertmanger。


告警组件 alertmanger 地址是在 Prometheus 的配置文件中指定,告警经过 alertmanger 去重、抑制等操作,最后执行告警动作,目前支持邮件、slack、微信和 webhook,如果是对接钉钉,便可以通过 webhook 方式触发钉钉的客户端发送告警。



Prometheus 配置监控对象有两种方式,一种是通过静态文件配置,另一种是动态发现机制,自动注册监控对象。


Prometheus 动态发现目前已经支持 Kubernetes、etcd、Consul 等多种服务发现机制,动态发现机制可以减少运维人员手动配置,在容器运行环境中尤为重要,容器集群通常在几千甚至几万的规模,如果每个容器都需要单独配置监控项不仅需要大量工作量,而且容器经常变动,后续维护更是异常麻烦。针对 Kubernetes 环境的动态发现,Prometheus 通过 watch kubernetes api 动态获取当前集群所有服务和容器情况,从而动态调整监控对象。



为了扩展单个 Prometheus 的采集能力和存储能力,Prometheus 引入了“联邦”的概念。


多个 Prometheus 节点组成两层联邦结构,如图所示,上面一层是联邦节点,负责定时从下面的 Prometheus 节点获取数据并汇总,部署多个联邦节点是为了实现高可用。下层的 Prometheus 节点又分别负责不同区域的数据采集,在多机房的事件部署中,下层的每个 Prometheus 节点可以被部署到单独的一个机房,充当代理。

四、Prometheus 落地实践

首先先简单介绍一下宜信容器这个产品,它是宜信内部基于 Kubernetes 搭建的容器管理平台,用户可以通过平台一键部署自己的服务。平台主要功能包括了服务管理(灰度发布、自动伸缩、多集群部署等)、镜像管理、监控告警、CICD、Nginx 管理、Ceph 存储等多个功能。



其中监控和告警和自动伸缩都是基于 Prometheus 构建。



Prometheus 采集的数据包括了主机性能监控、容器性能监控、nginx 访问流量、Kubernetes 状态以及平台各个自研组件的性能指标。


Prometheus 一方面为页面提供性能指标查询,如果 nginx qps、容器 cpu 利用率,另一方便提供基于这些指标的性能告警,告警发送至 alertmanger 中,并通过 alertmanger 的 webhook 触发后续的告警处理。



为了支持容器的多指标、多集群自动伸缩,平台开发一套自动伸缩模块,通过定时获取 Prometheus 监控指标,通过上面的公式(指标和除以目标值)计算出目标的容器副本数,最后通过调用 Kubernetes 接口扩展容器副本。


最后我想表达,Prometheus 也并非银弹。


首先,Prometheus 只针对性能和可用性监控,并不具备日志监控等功能,并不能通过 Prometheus 解决所有监控问题。


其次,Prometheus 认为只有最近的监控数据才有查询的需要,所有 Prometheus 本地存储的设计初衷只是保持短期(一个月)的数据,并非针对大量的历史数据的存储。如果需要报表之类的历史数据,则建议使用 Prometheus 的远端存储如 OpenTSDB、m3db 等。


Prometheus 还有一个小瑕疵是没有定义单位,这里需要使用者自己去区分或者事先定义好所有监控数据单位,避免数据缺少单位问题。


Q & A


Q1:Prometheus 能替代 Zabbix 吗?


A:在我们公司实际的生产环境中 Prometheus 完全可以替代 Zabbix。并且由于我个人主要负责容器云的建设,对 Prometheus 更加青睐。


Q2:如何对 Prometheus 进行权限限制?类似于 Zabbix 的用户密码校验。


A:其实 Prometheus 本身没有任何的权限限制,因为它只作为一套监控系统,它认为这种权限的管理应该属于上面的管理权限的系统去维护,而不应该在它这样一套监控系统里做,所以 Prometheus 本身在设计上就没有做任何的权限管理。


在我们宜信内部使用容器云的时候,其实针对 Prometheus 数据查询时,因为我们在容器云平台本身有一套权限管理,所以每个用户只能看到自己的容器,当然他只能看到自己容器的监控数据。


Q3:Prometheus 可以监控 web 地址吗?类似于 Zabbix 的 web 场景。


A:Prometheus 结合 blockbox 可以去监控一些 web 站点是不是健康,它会定时去调用一些你们提供的 web 接口,然后通过分析接口返回码或者是返回体,判断 web 服务是否健康,可以作为站点监控。除此之外还支持 TCP、DNS、ICMP 以及 HTTPS。


Q4:Prometheus 和 Ansible 有相同作用么?


A:我理解的 Ansible 其实大多数来说还是一种自动化运维工具,它虽然有一些简单监控,但是核心并不在监控上面,而是自动化部署和运维上的一些能力,而 Prometheus 本身只是一个单纯的监控和告警的组件。


Q5:请老师对比下 InfluxDB 和 Prometheus,个人觉得 InfluxDB 易用性更好。


A:InfluxDB 本身没有任何监控数据的能力,InfluxDB 的商业版本是集群的,可以存储大量的数据,但是开源版本是单机的,不建议使用。Prometheus 不但具有数据存储能力,还在数据指标采集能力,而单纯的 InfluxDB 只有数据存储能力。


Q6:宜信内部只用 Prometheus 做监控?还用其他产品配合吗?


A:在宜信公司内部,之前使用的是 Zabbix 监控,目前正在从 Zabbix 监控切换到 Prometheus 监控里。


Q7:哪种监控工具更适合做业务指标监控?


A:我个人接触过的业务指标监控主要是通过 Graphite、Prometheus 以及宜信开源的 UAV 监控,通常的业务指标监控都是通过埋点完成,大同小异。


Q8:Prometheus 监控 Oracle、MySQL 数据库方便吗?


A:由于现在各种 Prometheus export 非常丰富,针对这些中间件,如 Oracle、MySQL 这种监控是非常方便的。目前也支持得比较好,在我们自己的环境里面,我们通过 Kafka 的 export、MySQL 的 export、Redis 的 export 分别去监控我们自己的组件状态,如果你有一些自己定制的监控指标,也可以去定制一些 export,这些东西都比较简单,并不是很困难。


Q9:Prometheus 用什么存储比较好?本地存储容量有限。


A:在我们实际生产环境中本地存储只保留一个月数据,历史数据都放到 M3db 中保存。


Q10:我目前监控一种类型的对象,就需要一个 exporter,对象越多 exporter 的量也不断增长,怎么解决?


A:大部分的监控对象都需要特定类型 exporter,因为每种类型的监控指标的数据格式不一样,都要特定的 exporter 去解析这种指标,并且转换为 Prometheus 识别的指标类型。至于说 exporter 的量非常多,exporter 本身是很轻量级的,其实虽然多,但是在我们自己部署的环境里面,有的时候就和我们的应用捆绑到一个 Pod 去部署,其实非常方便维护,本身也不会有什么负载压力,exporter 本身很稳定,维护起来也非常简单。


Q11:非容器化部署的中间件也能监控吗?


A:其实 Prometheus 采集数据的时候,只适合采集数据的监控格式是否满足它的需求,它本身并不关心被监控对象是不是在容器里面,没有任何关系。只要对外暴露的监控数据格式符合 Prometheus 的要求就可以。


Q12:rancher 如何配合 Prometheus 使用?


A:如果你使用 rancher 这种第三方的容器平台,其实 Prometheus 本身和 Kubernetes 结合得非常紧密,你直接可以在 rancher 里部署一个 Prometheus。它本身只针对于 Kubernetes 这种监控,因为 rancher 的底层也是 Kubernetes,所以在 ranche 里部署 Prometheus 去监控指标,这个是没有问题的。


Q13:Prometheus 能把时序数据实时发动到 Kafka 吗?


A:可以的,目前社区已经有一个 Kafka 的 exporter,可以把监控数据写到 Kafka 里。


Q14:Prometheus 除了联邦集群的方式,是否存在心跳或者类似集群化的部署?


A:Improbable 开源的 Thanos 提供了 Prometheus 集群化能力,感兴趣的朋友可以深入了解一下。


Q15:Prometheus 配置网络设备时,有什么简易方式吗?设备类型跟 OID 有一定差异的情况下,有什么简易方式?


A:Prometheus 通过 SNMP exporter 监控网络设备时,OID 也需要单独配置,目前没有啥好办法。


Q16:如何更好地阅读 Prometheus 的源码?Prometheus 的源码质量如何?


A:Prometheus 代码包结构清晰,对于学习 Go 语言的朋友可以深度走读一遍。建议首先看数据采集和 PromQL 解析,最后看 TSDB。


Q17:Prometheus 未来会向哪个方向发展?


A:Prometheus 目前正在慢慢成为基于 HTTP 监控的规范,目前在容器领域和 kubernetes 一起,已经确定了领导地位,越来越多的中间件也开始原生支持 Prometheus 监控。Prometheus 3.x 即将发布,主要增强集群能力、数据存储能力以及安全性。


直播回放


https://m.qlchat.com/topic/details?topicId=2000005988804996


作者介绍


陈晓宇


宜信容器云架构师


  • 负责宜信 PaaS 平台的设计和推广,帮助企业从传统应用迁移至云原生;

  • 在云计算相关行业具有丰富的研发与架构经验,参与多个社区开源项目(Openstack、Kubernetes、Harbor 等);

  • 曾参与编写《深入浅出 Prometheus》一书。


原文链接


https://mp.weixin.qq.com/s?__biz=MzI4NTA1MDEwNg==&mid=2650781498&idx=1&sn=18cee3ae108faa53700bd1837734c3c5&chksm=f3f902afc48e8bb9a2e44a65f6ff08e5a82847be636ed664a5eea9eb472f7f871e7896cdd5b1&scene=27#wechat_redirect


2019-10-05 08:0016064
用户头像
dbaplus社群 数据连接未来

发布了 175 篇内容, 共 76.8 次阅读, 收获喜欢 614 次。

关注

评论 1 条评论

发布
用户头像
Prometheus 绝对不可能取代 Zabbix , 可以从多个纬度来说明这一点:
1: 首先 Prometheus 的告警规则的灵活性要远远低于 zabbix 对于告警规则的定义。
2: Zabbix 对于 指标 的配置非常灵活,不管是 计算项 还是 依赖项,都可以非常灵活的配置一些比如 使用率,比如 从别的指标派生出新指标场景 等等,但是对于 Prometheus 的 Exporter 如果要新增指标,大多数情况都需要去修改代码,这一点很不灵活。
3: UI 这一块就不说了,Prometheus 基本没什么展示页面都是结合 Grafana 来用,Zabbix 本身的展示UI也不是很好看,国内的大佬还是喜欢看看酷炫的,所以 结合 zabbix 二开,观纵科技的 Argus 做了非常多的深度的定制,感兴趣的可以了解一下。
4:对于数据存储这一块,zabbix 原生目前早就支持 TimescaleDB 的时序数据库,其次我们也可以通过二开的方式将数据实时同步到 VictoriaMetrics 类似的时序库。
5:Prometheus 更多的场景在就只是简单的指标监控场景下是符合要求的,也的确更加云原生,但是 Zabbix 对于 Prometheus 的所有的 Exporter 都可以无缝接入,不管是在取数频率 还是 数据存储周期都可以非常灵活的配置。
展开
2023-02-12 20:27 · 江苏
回复
没有更多了
发现更多内容

Linux下diff的操作详解

良知犹存

Linux

想要高效搭建企业信息平台?教你轻松选择开发框架!

Marilyn

敏捷开发 快速开发

出炉!华为18A自爆SpringCloud微服务分布式笔记

996小迁

Java 编程 架构 面试 SpringCloud

程序员的美丽假期(并不)

Philips

敏捷开发 快速开发

java安全编码指南之:Thread API调用规则

程序那些事

Java并发 多线程 java安全编码 java安全编码指南 java编码规范

成为一名合格的技术类产品经理

小清新同学

产品经理

面试大厂被面试官用MyBatis怼到“哑口无言”?这份MyBatis源码笔记助你吊打面试官!

Java架构之路

Java 程序员 架构 面试 编程语言

SpringBoot有多重要?面试用SpringBoot把面试官唬住了要30k都行!

Java架构之路

Java 程序员 架构 面试 编程语言

日常工作问题集锦

hasWhere

直播预告 | 云时代的数据库客户端——CloudQuery最佳实践

BinTools图尔兹

数据库 sql 安全 工具软件

灯下黑中的自己

非著名程序员

个人成长 管理 管理者

成为 Apache 贡献者,So easy!

代立冬

Apache 贡献

Go发起HTTP2.0请求流程分析(中篇)——数据帧&流控制

Gopher指北

后端 HTTP2.0 Go 语言

几行代码轻松实现跨系统传递 traceId,再也不用担心对不上日志了!

程序员小航

Java 日志 链路追踪 工作笔记 traceId

mongodb内核源码实现、性能调优、最佳运维实践系列-百万级高并发mongodb集群性能数十倍提升优化实践(上篇)

杨亚洲(专注MongoDB及高性能中间件)

MySQL 数据库 nosql mongodb 分布式数据库mongodb

让黑产无处遁形 京东智联云推出风险识别服务

京东科技开发者

人工智能 学习 风险识别

阿里P8大牛呕心沥血总结整理的《Java面经手册》,通过实践的方式向你深度讲解Java核心知识点

Java架构之路

Java 程序员 架构 面试 编程语言

Week 4 命题作业及总结

阿泰

华为云数据安全中心正式公测,8大核心数据安全能力守护你的数据

华为云开发者联盟

华为 安全 数据

第四周学习心得

熊桂平

极客大学架构师训练营

jvm笔记

pCat

Java JVM

从理论到工具:带你全面了解自动化测试框架

禅道项目管理

开源 DevOps 工具 自动化测试

mongodb 源码实现、调优、最佳实践系列-百万级高并发mongodb集群性能数十倍提升优化实践(下篇)

杨亚洲(专注MongoDB及高性能中间件)

MySQL nosql mongodb 架构 分布式 分布式数据库mongodb

你听过CatBoost吗?本文教你如何使用CatBoost进行快速梯度提升

计算机与AI

Python 学习 优化

第四周作业

熊桂平

极客大学架构师训练营

LeetCode题解:98. 验证二叉搜索树,递归,JavaScript,详细注释

Lee Chen

大前端 LeetCode

Github惊现高星神作,两份算法宝典让你横扫大厂算法面试题

编程 程序员 算法 计算机

深入理解 JVM 垃圾回收算法 - 复制算法

Java架构师迁哥

台湾地区为什么会丢包高?

德胜网络-阳

华为鲲鹏专家解读:90%代码如何移植到鲲鹏平台

华为云开发者联盟

软件 鲲鹏

详细分析定制企业应用的价格

Learun

敏捷开发 快速开发 软件架构

为什么说Prometheus是足以取代Zabbix的监控神器?_文化 & 方法_dbaplus社群_InfoQ精选文章