写点什么

谷歌首创基于云的 AI 自治系统,为数据中心自动降温

  • 2018-09-06
  • 本文字数:1813 字

    阅读完需:约 6 分钟

2016 年,DeepMind 联合开发了一个人工智能驱动的推荐系统,用以提高谷歌数据中心的能源效率。现在,他们将这个系统提升到一个新的水平:在数据中心运营专家的监督之下直接让 AI 系统控制数据中心的冷却系统。这种首创的基于云的控制系统现在可以安全地为多个谷歌数据中心提供节能服务。

现实世界的很多最紧迫的问题变得越来越复杂,为它们寻求解决方案可能会让人不堪重负。在 DeepMind 和谷歌,谷歌认为,如果其能够将 AI 作为发现新知识的工具,那么就可以更容易得找到解决方案。

2016 年,谷歌联合开发了一个人工智能驱动的推荐系统,用以提高谷歌数据中心的能源效率。谷歌的想法很简单:即使是微小的改进也可以显著地节约能源,减少二氧化碳排放,从而有助于应对气候变化。

现在谷歌将这个系统提升到一个新的水平:谷歌不是通过人为的方式实现推荐系统,而是在数据中心运营专家的监督之下让谷歌的 AI 系统直接控制数据中心的冷却系统。这种首创的基于云的控制系统现在可以安全地为多个谷歌数据中心提供节能服务。

它是怎么运作的

每隔五分钟,谷歌的 AI 系统就会从数千个传感器收集数据中心冷却系统的快照,并将其输入到谷歌的深度神经网络中,用以预测不同的潜在操作的组合将如何影响未来的能源消耗。然后,AI 系统将识别出哪些操作将会最小化能量消耗,同时又能满足安全约束。这些操作被发送回数据中心,数据中心的本地控制系统负责验证和执行它们。

这个想法源于使用 AI 推荐系统的数据中心专家的反馈。他们告诉谷歌,虽然推荐系统已经为他们提供了一些新的最佳实践——例如将冷却负载分散到更多而不是更少的设备上——但实现推荐仍然需要很多的运营工作量和监督。当然,他们想知道谷歌是否可能实现在没有人工干预的情况下实现类似的节能。

谷歌很高兴地说,答案是肯定的!

专为安全和可靠性而设计

谷歌的数据中心包含数千台服务器,用于支持谷歌搜索、Gmail 和 YouTube 等热门服务。确保它们可靠高效地运行是谷歌的关键任务。谷歌从头开始设计谷歌的 AI 代理和底层控制基础设施,并时刻考虑到安全性和可靠性问题,还使用了八种不同的机制来确保系统始终按预期运行。

谷歌已经实现的一个简单方法是预估不确定性。对于每一个潜在的操作——可能有数十亿个——谷歌的 AI 代理会计算出它们的信心指数。低信心指数的操作将不予考虑。

另一种方法是进行双层验证。谷歌将根据由数据中心运维人员定义的内部安全约束列表对 AI 计算得出的最佳操作进行审查。在指令从云端发送到物理数据中心后,本地控制系统就根据自己的约束集对指令进行验证。这种冗余检查可以确保系统保持在局部约束范围内,并且运维人员可以完全控制操作边界。

最重要的是,谷歌的数据中心运维人员始终控制着局面,可以随时选择退出 AI 控制模式。在这些情况下,控制系统将无缝地从 AI 控制转移到现场规则。

可以从下图了解谷歌开发的其他安全机制:

逐渐增长的节能

谷歌的原始推荐系统有运维人员进行审查和实现操作,而谷歌新的 AI 控制系统却直接自己实现了操作。考虑到安全性和可靠性问题,谷歌有目的地将系统的优化边界限制在较窄的操作体系中,这意味着在节能方面存在风险和回报之间的折衷。

尽管只有几个月的时间,这个系统已经实现了平均约 30%的持续节能,并有了进一步的预期改进。这是因为随着时间的推移,系统会因为数据越来越多而变得更好,如下图所示。随着技术的成熟,谷歌的优化边界也将得到扩展,从而实现更高效的节能。

这张图描绘了相对于历史基线的 AI 性能趋势。性能通过通用的工业冷却能效指标(kW/ton,每吨冷却对应的能量输入)来衡量。在 9 个月时间里,谷歌的 AI 控制系统性能从 12%的改进增加到大约 30%的改进。

谷歌的 AI 控制系统正在寻找更多新颖的管理冷却的方式,这些方法甚至让数据中心运维人员感到惊讶。谷歌数据中心运维人员 Dan Fuenffinger 说:“看到 AI 学会利用冬季条件并生成比普通水更冷的水,着实令人感到惊讶,这样可以降低冷却所需的能量。随着时间的推移,人工规则不会变得更好,但 AI 却可以“。

谷歌很高兴谷歌的 AI 控制系统能够安全可靠地运行,同时始终如一地实现节能。但是,数据中心只是个开始。从长远来看,谷歌认为有可能将这项技术应用到其他工业环境,并在更大规模的范围内应对气候变化。

查看英文原文: https://de ep mind.com/blog/safety-first-ai-autonomous-data-centre-cooling-and-industrial-control/

感谢陈利鑫对本文的审校。

2018-09-06 19:001923
用户头像

发布了 731 篇内容, 共 460.2 次阅读, 收获喜欢 2004 次。

关注

评论

发布
暂无评论
发现更多内容

招聘 | 腾讯云大数据,期待您的加入!

腾讯云大数据

大数据

从 RxJS 到 Flink:如何处理数据流?

Apache Flink

flink 流计算

中国用户规模最大教育科技独角兽作业帮再获投资机构青睐

大作业二--知识点整理

Nick~毓

原始时代对分布式架构的探索

证明谁才是第一

从源码层面理解ArrayList 扩容策略

geekymv

Java 扩容 ArrayList

Spark 3.0 关键新特性回顾

hanke

大数据 spark 开源

图灵测试已过时,AI 需要新基准测试;别了Flash,Adobe播放器正式停运

京东科技开发者

云计算 AI 量子计算机

依赖倒置原则与单一接口隔离原则

Andy

京东面试:说说MySQL的架构体系

田维常

MySQL

在线教育的发展

anyRTC开发者

AI 音视频 WebRTC 在线教育

这些面试题你会吗?为什么有人说Android开发不再吃香?最全的BAT大厂面试题整理

欢喜学安卓

android 程序员 面试 移动开发

纵观 Excel 演化史,开发者如何通过“表格技术”提升企业生产力

葡萄城技术团队

Excel SpreadJS

创业公司用 Serverless,到底香不香?

Serverless Devs

Java Serverless 运维 云原生 大前端

GitHub 的野心,5600 万开发者的新社区

打工人 Coco

GitHub 开源 开源社区

看透Spring MVC源代码分析与实践

田维常

Java

七大关于DevOps的误解,你中了几招?

禅道项目管理

DevOps 运维 开发 自动化测试

数仓实时化改造:Hudi on Flink 在顺丰的实践应用

Apache Flink

flink 流计算

为PostgreSQL的表自动添加分区

PostgreSQLChina

数据库 postgresql 开源

前端异常监控 Sentry 的私有化部署和使用

智联大前端

大前端 监控 异常 sentry 错误

Go语言分布式系统配置管理实践--go archaius

华为云开发者联盟

分布式 Go 语言

3轮技术面+总监面+HR面轻松砍下阿里口碑Offer!

Java架构追梦

Java 面试 架构师 口碑Offer

真牛!成功跳槽百度工资从15K涨到28K,附赠课程+题库

欢喜学安卓

android 程序员 面试 移动开发

大作业一

走走,停停……

Selenium高效拍档-HtmlUnit

dothetrick

Java 自动化测试 测试开发

来啦!2020 Java开源项目权威排名解读:Spring Boot排名稳定、Shiro未上榜

JavaGuide

开源 springboot springsecurity shiro

重学JS | 深入理解Object,必会知识点汇总

梁龙先森

大前端 编程语言

区块链加密货币钱包系统APP开发|区块链加密货币钱包软件开发

系统开发

深入讲解拉链表,还怕面试官问?

大数据老哥

大数据 数据模型 数仓项目

大作业2

走走,停停……

mybatis使用及SQL语句优化小结

华为云开发者联盟

数据库 mybatis 索引 实用SQl语句

谷歌首创基于云的AI自治系统,为数据中心自动降温_AI&大模型_DeepMind_InfoQ精选文章