速来报名!AICon北京站鸿蒙专场~ 了解详情
写点什么

谷歌首创基于云的 AI 自治系统,为数据中心自动降温

  • 2018-09-06
  • 本文字数:1813 字

    阅读完需:约 6 分钟

2016 年,DeepMind 联合开发了一个人工智能驱动的推荐系统,用以提高谷歌数据中心的能源效率。现在,他们将这个系统提升到一个新的水平:在数据中心运营专家的监督之下直接让 AI 系统控制数据中心的冷却系统。这种首创的基于云的控制系统现在可以安全地为多个谷歌数据中心提供节能服务。

现实世界的很多最紧迫的问题变得越来越复杂,为它们寻求解决方案可能会让人不堪重负。在 DeepMind 和谷歌,谷歌认为,如果其能够将 AI 作为发现新知识的工具,那么就可以更容易得找到解决方案。

2016 年,谷歌联合开发了一个人工智能驱动的推荐系统,用以提高谷歌数据中心的能源效率。谷歌的想法很简单:即使是微小的改进也可以显著地节约能源,减少二氧化碳排放,从而有助于应对气候变化。

现在谷歌将这个系统提升到一个新的水平:谷歌不是通过人为的方式实现推荐系统,而是在数据中心运营专家的监督之下让谷歌的 AI 系统直接控制数据中心的冷却系统。这种首创的基于云的控制系统现在可以安全地为多个谷歌数据中心提供节能服务。

它是怎么运作的

每隔五分钟,谷歌的 AI 系统就会从数千个传感器收集数据中心冷却系统的快照,并将其输入到谷歌的深度神经网络中,用以预测不同的潜在操作的组合将如何影响未来的能源消耗。然后,AI 系统将识别出哪些操作将会最小化能量消耗,同时又能满足安全约束。这些操作被发送回数据中心,数据中心的本地控制系统负责验证和执行它们。

这个想法源于使用 AI 推荐系统的数据中心专家的反馈。他们告诉谷歌,虽然推荐系统已经为他们提供了一些新的最佳实践——例如将冷却负载分散到更多而不是更少的设备上——但实现推荐仍然需要很多的运营工作量和监督。当然,他们想知道谷歌是否可能实现在没有人工干预的情况下实现类似的节能。

谷歌很高兴地说,答案是肯定的!

专为安全和可靠性而设计

谷歌的数据中心包含数千台服务器,用于支持谷歌搜索、Gmail 和 YouTube 等热门服务。确保它们可靠高效地运行是谷歌的关键任务。谷歌从头开始设计谷歌的 AI 代理和底层控制基础设施,并时刻考虑到安全性和可靠性问题,还使用了八种不同的机制来确保系统始终按预期运行。

谷歌已经实现的一个简单方法是预估不确定性。对于每一个潜在的操作——可能有数十亿个——谷歌的 AI 代理会计算出它们的信心指数。低信心指数的操作将不予考虑。

另一种方法是进行双层验证。谷歌将根据由数据中心运维人员定义的内部安全约束列表对 AI 计算得出的最佳操作进行审查。在指令从云端发送到物理数据中心后,本地控制系统就根据自己的约束集对指令进行验证。这种冗余检查可以确保系统保持在局部约束范围内,并且运维人员可以完全控制操作边界。

最重要的是,谷歌的数据中心运维人员始终控制着局面,可以随时选择退出 AI 控制模式。在这些情况下,控制系统将无缝地从 AI 控制转移到现场规则。

可以从下图了解谷歌开发的其他安全机制:

逐渐增长的节能

谷歌的原始推荐系统有运维人员进行审查和实现操作,而谷歌新的 AI 控制系统却直接自己实现了操作。考虑到安全性和可靠性问题,谷歌有目的地将系统的优化边界限制在较窄的操作体系中,这意味着在节能方面存在风险和回报之间的折衷。

尽管只有几个月的时间,这个系统已经实现了平均约 30%的持续节能,并有了进一步的预期改进。这是因为随着时间的推移,系统会因为数据越来越多而变得更好,如下图所示。随着技术的成熟,谷歌的优化边界也将得到扩展,从而实现更高效的节能。

这张图描绘了相对于历史基线的 AI 性能趋势。性能通过通用的工业冷却能效指标(kW/ton,每吨冷却对应的能量输入)来衡量。在 9 个月时间里,谷歌的 AI 控制系统性能从 12%的改进增加到大约 30%的改进。

谷歌的 AI 控制系统正在寻找更多新颖的管理冷却的方式,这些方法甚至让数据中心运维人员感到惊讶。谷歌数据中心运维人员 Dan Fuenffinger 说:“看到 AI 学会利用冬季条件并生成比普通水更冷的水,着实令人感到惊讶,这样可以降低冷却所需的能量。随着时间的推移,人工规则不会变得更好,但 AI 却可以“。

谷歌很高兴谷歌的 AI 控制系统能够安全可靠地运行,同时始终如一地实现节能。但是,数据中心只是个开始。从长远来看,谷歌认为有可能将这项技术应用到其他工业环境,并在更大规模的范围内应对气候变化。

查看英文原文: https://de ep mind.com/blog/safety-first-ai-autonomous-data-centre-cooling-and-industrial-control/

感谢陈利鑫对本文的审校。

2018-09-06 19:001705
用户头像

发布了 731 篇内容, 共 451.5 次阅读, 收获喜欢 2002 次。

关注

评论

发布
暂无评论
发现更多内容

硬核!阿里P8自爆春招面试核心手册,Github上获赞65.7K

Java你猿哥

Java 面试 面经 八股文 春招‘

修复“现在无法将USB设备连接到虚拟机,稍后尝试连接此USB设备 ”的方法

理理

usb pd18虚拟机 PD虚拟机不能联网

安装Red Giant Maxon App时提示错误11025:无法连接到Red Giant服务

理理

红巨人特效插件 Red Giant 后期制作

分析机构称AMD的PC市场空间正被蚕食,英特尔第12/13代酷睿处理器更具竞争力

科技之家

阿里高工珍藏版“亿级高并发系统设计手册(2023版)”面面俱到,太全了!

采菊东篱下

Java 并发

过等保堡垒机选择云堡垒机可以吗?有推荐的吗?

行云管家

等保 等级保护 行云管家 过等保

一文看懂数据产品经理

Taylor

产品 #数据产品经理 #数据产品 #职业发展 #产品思维

自动调优工具AOE,让你的模型在昇腾平台上高效运行

华为云开发者联盟

人工智能 华为云 昇腾 华为云开发者联盟 企业号 3 月 PK 榜

批量上传iOS应用程序截图的实用技巧

雪奈椰子

草图大师;SketchUp Pro 2022 mac中英双语

真大的脸盆

Mac 3D 建模软件 建模工具 3d建模

模拟经营类游戏:城市天际线Cities Skylines 怎么设置无限金币?

理理

城市天际线 Mac城市建造类游戏 Cities: Skylines

内核不中断前提下,Gaussdb(DWS)内存报错排查方法

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 企业号 3 月 PK 榜

火山引擎DataTester:构建增长闭环,3-5人即可搭建企业增长团队

字节跳动数据平台

AB testing实战 A/B测试 企业号 3 月 PK 榜

马蹄链DAPP合约项目系统开发技术方案(成熟技术)

I8O28578624

合约跟单项目系统开发(技术源码)丨合约量化系统开发技术(成熟案例)

I8O28578624

ByteHouse MaterializedMySQL增强优化

字节跳动数据平台

数据库 云原生 Clickhouse 企业号 3 月 PK 榜

SpringBoot整合RocketMQ,尝尝几大高级特性!

Java你猿哥

RocketMQ Spring Boot 后端 ssm Java工程师

深度解析微服务高并发:适配SpringMVC框架适配模块及实现原理

Java你猿哥

Java spring ssm Spring MVC Java工程师

软件测试/测试开发丨app自动化之如何参数化用例

测试人

软件测试 自动化测试 测试开发

软件测试/测试开发丨APP自动化Android特殊控件Toast识别

测试人

软件测试 自动化测试 测试开发

2023年新疆等级保护测评机构新名单看这里!

行云管家

等保 新疆 等级测评机构

数禾科技 AI 模型服务 Serverless 容器化之旅

云布道师

阿里云

一点点进步的OceanBase数据库文档!

OceanBase 数据库

数据库 oceanbase

多功能PDF编辑工具:Nitro PDF Pro激活版

真大的脸盆

Mac PDF Mac 软件 PDF编辑 pdf编辑工具

简述几种常用的排序算法

华为云开发者联盟

人工智能 华为云 华为云开发者联盟 企业号 3 月 PK 榜

ADDS-DepthNet:基于域分离的全天图像自监督单目深度估计

飞桨PaddlePaddle

让GitHub低头认错的这份阿里内部绝密Java面试八股文手册有多强?

Java你猿哥

面试 ssm 面经 八股文 Java八股文

LED灯珠对LED显示屏8大影响

Dylan

LED显示屏 led显示屏厂家 户内led显示屏

如何解决Mac苹果上运行VMware Fusion虚拟机提示“未找到文件”

理理

VM虚拟机 未找到文件 VMware Fusion虚拟机 苹果系统虚拟机

Icons8 for mac(logo图标素材大全)

理理

Icons8 logo图标 素材大全 Icons8 for mac

龙蜥开发者说:给芯片以系统、给系统以社区 | 第 17 期

OpenAnolis小助手

开源 操作系统 芯片 社区 龙蜥开发者说

谷歌首创基于云的AI自治系统,为数据中心自动降温_AI&大模型_DeepMind_InfoQ精选文章