写点什么

Google 为他们的客户引入了 Preemptible GPU

  • 2018-02-21
  • 本文字数:1452 字

    阅读完需:约 5 分钟

看新闻很累?看技术新闻更累?试试下载 InfoQ 手机客户端,每天上下班路上听新闻,有趣还有料!

Google 宣布在他们的云平台上,释放为 Preemptible 虚拟机(Virtual Machine)附加图像处理器(Graphical Processing Unit,GPU)的 beta 发布版本。Google 云平台(Google Cloud Platform)的客户现在能够将 NVIDIA K80 和 NVIDIA P100 GPU 附加到 Preemptible VM 上,每个 GPU 每小时的价格分别是 0.22 和 0.73 美分,这要比 on-demand 实例上 GPU 的价格便宜 50%。这个发布版本能够让 Google 的客户在计算密集型的任务上有了更多的选择,这样他们能够在更细的粒度上进行高吞吐的批处理计算、机器学习以及科学和技术工作负载。

GCP 用户能够创建和运行 Preemptible VM 实例,它要比标准的 on-demand 实例成本低得多。但是,Google Compute Engine 会在 30 秒的警告之后,终止(preempt)这些实例。这些实例最多能使用 24 小时。GCP 用户如果具有容错的工作负载并且不需要专门的实例,就成本而言,Preemptible 实例是很合适的选择。另外,关联到 Preemptible VM 上的 GPU 默认都是 preemptible 的,因此成本会更低。

Alex Hickey 是 CIO Dive 站点的编辑,在最新的简报中,他提供了一些利用 Google Preemptiple GPU 的观点:

对于一般的公司来说,构建或运行 AI 系统并不便宜。专家们的薪水已经达到了六位数甚至更高,AI 的预算也变得很难分配。计算处理的硬件资源一般都是外包的,以便于节省成本。GPU 比专门的硬件在速度和处理时间上表现更好,而专门的硬件往往很快就会积累可观的前期和维护成本。可用工具,包括用于处理的硬件,是 AI 和 ML 实现普及的重要因素。据统计,40% 的公司具有 AI 实验室或实验性地应用,但是只有大约 20% 的企业实现了 AI 的规模化部署或核心业务功能的部署。不过,凭借更加可负担的 GPU,更多的公司能够在预算和策略方面找到空间,实现 POC 和测试用例的落地。

典型的 Preemptible VM 可以通过在 gcloud 命令行的实例创建命令上附加_–preemptible_ 参数或者在使用 REST API 时,将scheduling.preemptible属性设置为true进行创建。另外,用户还可以在 Google Cloud Platform Console 上将 Preemptibility 设置为 _“On”_,然后像往常一样为其关联 GPU。

图片来源: https://cloudplatform.googleblog.com/2018/01/introducing-preemptible-gpus-50-off.html

除此之外,用户如果需要更强的可扩展性,还可以通过创建由preemptible 实例所组成的托管实例组实现GPU 动态池的功能。需要注意的是,在创建组之前,要指定实例模板的preemptible 选项。这种方法所能带来的好处是如果preemptible 实例有足够的处理能力的话,在重新preempt 的时候,它们能够自动重建。当前,preemptible GPU 的特性只能在US-central1 region 中使用。Preemptible VM 的完整文档可以通过 Compute Engine 文档进行访问。

Google、Amazon 和 Microsoft 都提供了这样低价的计算资源,形式包括 Preemptible VM、spot 或 reserved VM 实例。它们的差异在于实例使用的灵活性。Amazon EC2 Spot 实例兼容 Preemptible VM。但是,客户不能为它们添加 GPU。AWS 和 Azure 所提供的 reserved 实例成本优势不明显,不过它们有一年或三年的期限。根据用例和所需的可用性不同,用户可以选择存活时间更短的 Preemptible VM 或 AWS spot 实例,也可以选择生命周期更可扩展的 Azure 或 AWS Reserved 实例。它们在成本上都比云平台的 on-demand 实例更廉价。

查看英文原文 Google Introduces Low-Priced Preemptible GPUs for Their Customers

2018-02-21 18:002113

评论

发布
暂无评论
发现更多内容

16种国际版多语言点赞抖音分享点赞任务平台网站APP源码搭建

网站,小程序,APP开发定制

玩转Redis|学会这10点让你分分钟拿下Redis,满足你的一切疑问

浅羽技术

Java 数据库 redis 缓存 三周年连更

2022-04-22:给你两个正整数数组 nums 和 target ,两个数组长度相等。 在一次操作中,你可以选择两个 不同 的下标 i 和 j , 其中 0 <= i, j < nums.leng

福大大架构师每日一题

Go 算法 rust

HTTP协议中Via的用法

阿泽🧸

三周年连更 via

Android C++系列:数组在函数中注意事项

轻口味

c++ android 三周年连更

.gitignore 详解

程序员海军

三周年连更

Mysql主从复制

乌龟哥哥

三周年连更

如何使用 go-micro 写微服务应用

宇宙之一粟

Go 微服务 三周年连更

100个Python实战项目(十三)使用 Tkinter GUI 库构建闹钟应用程序

海拥(haiyong.site)

三周年连更

申请chatGPT账号

石云升

AI ChatGPT 三周年连更

Spring 的 IoC(控制反转)

HoneyMoose

iOS MachineLearning 系列(3)—— 静态图像分析之区域识别

珲少

让GPT学会使用工具,拓展技能

蔡超

GPT ChatGPT LLM GPT-4 #LangChain

深度学习基础入门篇[七]:常用归一化算法、层次归一化算法、归一化和标准化区别于联系、应用案例场景分析。

汀丶人工智能

人工智能 机器学习 深度学习 归一化算法

Unity 之 超级实用的小技巧

陈言必行

Unity 三周年连更

ArkCompiler开发

坚果

OpenHarmony 三周年连更

跨平台应用开发进阶(五十四):Android APP调试工具:ADB

No Silver Bullet

android adb 跨平台应用开发 三周年连更 APP调试工具

为啥运维人员更喜欢 NeoVim 而不是 Vim?这8个原因或许是答案,命令对比一目了然!

wljslmz

Linux 运维 三周年连更

深度学习基础入门篇[六(1)]:模型调优:注意力机制[多头注意力、自注意力],正则化【L1、L2,Dropout,Drop Connect】等

汀丶人工智能

人工智能 机器学习 深度学习 正则化 注意力机制

《皮囊》

后台技术汇

三周年连更

Orillusion荣获SegmentFault AIGC Hackathon 2023 线上黑客马拉松赛二等奖&最佳创意奖

Orillusion

开源 元宇宙 webgpu AIGC ChatGPT

如何真正“不花一分钱”部署一个属于你的大模型

Zhendong

人工智能 PyTorch ChatGPT

「Go框架」深入理解gin框中Context的Request和Writer对象

Go学堂

golang 开源 程序员 个人提升

IPv6协议转换技术

穿过生命散发芬芳

ipv6 三周年连更

MediaPlayer音频与视频的播放介绍

芯动大师

api 网关 MediaPlayer 三周年连更

一文读懂Redis哨兵

京茶吉鹿

数据库 nosql redis哨兵

职场进阶必须拥有的4种能力,你掌握了吗?

Jack

如何在 Java 8 中使用 Streams?结合多种案例剖析学习!

Java架构历程

三周年连更

音视频八股文(3)--ffmpeg常见命令(2)

福大大架构师每日一题

音视频 ffmpeg

寻找工作中焦虑的源头——系统思考实践

Bruce Talk

系统性思考

线上多域名实战

越长大越悲伤

JavaScript 前端 CDN 域名

Google为他们的客户引入了Preemptible GPU_语言 & 开发_Steef-Jan Wiggers_InfoQ精选文章