写点什么

AWS 与微软合作发布 Gluon API 可快速构建机器学习模型

  • 2017-10-18
  • 本文字数:1422 字

    阅读完需:约 5 分钟

2017 年 10 月 12 日, AWS 与微软合作发布了 Gluon 开源项目,该项目旨在帮助开发者更加简单快速的构建机器学习模型,同时保留了较好的性能。

根据 Gluon 项目官方 Github 页面上的描述,Gluon API 支持任意一种深度学习框架,其相关规范已经在 Apache MXNet 项目中实施,开发者只需安装最新版本的 MXNet(master)即可体验。AWS 用户可以创建一个AWS Deep Learning AMI 进行体验。

该页面提供了一段简易使用说明,摘录如下:

本教程以一个两层神经网络的构建和训练为例,我们将它称呼为多层感知机(multilayer perceptron)。(本示范建议使用Python 3.3 或以上,并且使用 Jupyter notebook 来运行。详细教程可参考这个页面。)

首先,进行如下引用声明:

复制代码
import mxnet as mx
from mxnet import gluon, autograd, ndarray
import numpy as np

然后,使用gluon.data.DataLoader承载训练数据和测试数据。这个 DataLoader 是一个 iterator 对象类,非常适合处理规模较大的数据集。

复制代码
train_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=True, transform=lambda data, label: (data.astype(np.float32)/255, label)),
batch_size=32, shuffle=True)
test_data = mx.gluon.data.DataLoader(mx.gluon.data.vision.MNIST(train=False, transform=lambda data, label: (data.astype(np.float32)/255, label)),
batch_size=32, shuffle=False)

接下来,定义神经网络:

复制代码
# 先把模型做个初始化
net = gluon.nn.Sequential()
# 然后定义模型架构
with net.name_scope():
net.add(gluon.nn.Dense(128, activation="relu")) # 第一层设置 128 个节点
net.add(gluon.nn.Dense(64, activation="relu")) # 第二层设置 64 个节点
net.add(gluon.nn.Dense(10)) # 输出层

然后把模型的参数设置一下:

复制代码
# 先随机设置模型参数
# 数值从一个标准差为 0.05 正态分布曲线里面取
net.collect_params().initialize(mx.init.Normal(sigma=0.05))
# 使用 softmax cross entropy loss 算法
# 计算模型的预测能力
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
# 使用随机梯度下降算法 (sgd) 进行训练
# 并且将学习率的超参数设置为 .1
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': .1})

之后就可以开始跑训练了,一共分四个步骤。一、把数据放进去;二、在神经网络模型算出输出之后,比较其与实际结果的差距;三、用 Gluon 的autograd计算模型各参数对此差距的影响;四、用 Gluon 的trainer方法优化这些参数以降低差距。以下我们先让它跑 10 轮的训练:

复制代码
epochs = 10
for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(mx.cpu()).reshape((-1, 784))
label = label.as_in_context(mx.cpu())
with autograd.record(): # Start recording the derivatives
output = net(data) # the forward iteration
loss = softmax_cross_entropy(output, label)
loss.backward()
trainer.step(data.shape[0])
# Provide stats on the improvement of the model over each epoch
curr_loss = ndarray.mean(loss).asscalar()
print("Epoch {}. Current Loss: {}.".format(e, curr_loss))

若想了解更多 Gluon 说明与用法,可以查看 gluon.mxnet.io 这个网站。

2017-10-18 20:241724

评论

发布
暂无评论
发现更多内容

MAC地址与IP地址

急需上岸的小谢

10月月更

一文搞懂CAN FD总线协议帧格式

不脱发的程序猿

汽车电子 CAN FD 一文搞懂CAN FD总线

CorelDRAW 2019,软件应用项目(二)

张立梵

设计师 CorelDRAW 2022 10月月更

Vue 2x 中使用 render 和 jsx 的最佳实践 (2)

默默的成长

Vue 前端 10月月更

02微信高能性复杂度分析

神奇的叶叔叔

架构实战营 - 模块二作业

Geek_92ba6f

架构设计 微信朋友圈

【Go实现】实践GoF的23种设计模式:代理模式

元闰子

Go 设计模式 代理模式

微信朋友圈的高性能复杂度分析

小虎

架构训练营

Smart Finance:熊市下,GameFi P2E热潮仍能得到延续

鳄鱼视界

模块二作业

Diana S

#架构实战营

低代码探索:freemarker的模板和表达式

程序员架构进阶

低代码平台 模板引擎 10月月更 freemarker

Vue整合HighCharts和ECharts实现数据可视化

闫同学

Vue 前端 10月月更

架构实战营模块2-微信朋友圈高性能架构

冷夫冲

架构 架构训练营 架构实战营

Java多线程 线程池Executor框架

Yeats_Liao

后端 Java core 10月月更

Kafka消费客户端协调器讲解(GroupCoordinator)

石臻臻的杂货铺

kafka 10月月更

面试突击90:过滤器和拦截器有什么区别?

王磊

【算法】剑指offer-调整数组顺序&&数组出现超过一半的数字

芒果酱

c++ 算法 10月月更

极客时间—架构实战营—第九期—模块二作业

阿梁

TCP 复位攻击原理和实战复现

急需上岸的小谢

10月月更

微信朋友圈高性能复杂度分析

兜里贼缺钱

分支规范和git提交规范

默默的成长

git 前端 10月月更

当前Serverless的六大局限性

阿泽🧸

Serverless 10月月更

【从0到1学算法】6.Select Sort算法

Geek_65222d

10月月更

训练实战营模块二

Geek_408c99

Kafka监控与指标之UnderReplicatedPartitions

石臻臻的杂货铺

Kafk 10月月更

【ArchSummit】阿里云原生微服务架构治理最佳实践

小明Java问道之路

Java 架构 全球架构师峰会 ArchSummit 10月月更

前端JS规范

默默的成长

Vue 前端 10月月更

企业级大数据技术框架

穿过生命散发芬芳

大数据技术 10月月更

cstdio的源码学习分析10-格式化输入输出函数fprintf---宏定义/辅助函数分析04

桑榆

源码刨析 10月月更 C++

八大排序 (上)

lovevivi

c 数据结构 10月月更

八大排序(下)

lovevivi

c 数据结构 10月月更

AWS与微软合作发布Gluon API 可快速构建机器学习模型_微软_sai_InfoQ精选文章