写点什么

业界主流深度学习工具的基准评测

  • 2017-08-08
  • 本文字数:1889 字

    阅读完需:约 6 分钟

第六版论文中使用了不同的硬件平台、在三种不同类型的流行深度学习方法上对 GPU 加速工具的评估。根据基准评测结果,当存在 GPU 时,团队发现 Caffe 平台在全连接网络上表现更好,而 TensorFlow 在卷积神经网络和循环神经网络上都表现突出。GPU 内存是在 Caffe 等许多工具上运行大型网络的关键指标之一,CNTK 和 Torch 不能在 GTX 980(其有 4GB 内存)上运行 32 或更多个 mini-batch 大小的 ResNet-50,而 TensorFlow 在管理 GPU 内存上表现更好,并且其基本上可以在所有的配置情况下运行。cuBLAS 是一个高性能的 BLAS 库,但其 API 参数对实现好的结果来说是很重要的。在计算一些情况下的卷积运算时,FFT 是一个更好的选择。

在仅使用 CPU 的机器上,Caffe 在 CPU 并行上表现更好,TensorFlow 也在 CPU 资源利用上有很好的表现。在 CPU 并行机制上,使分配的线程等于 CPU 的核数可以得到更好的表现。

GTX 1080 有更高的基础时钟(1733 MHz)和更多 CUDA 内核,在大部分案例中也都获得了更好的结果。但是,Tesla K80 有更大的内存(12 GB),可以支持应用运行更大型的网络和更大的 mini-batch。此外,每一个 K80 卡还配备了 2 个 GPU 芯片,这可能能让其在运行并行程序时获得更好的表现,但在我们的基准评测中,它并没有得到充分的使用。

第六版时局限:团队没有测试跨多个 GPU 和多台机器的可扩展性,因为这种方法可能无法增强一些工具的主要特性。比如虽然 CNTK 支持跨多 GPU 和机器运行,但其它工具却不行。

论文第七版

深度学习已被证明是一种可成功用于许多任务的机器学习方法,而且它的广泛流行也将很多开源的深度学习软件工具开放给了公众。训练一个深度网络往往是一个非常耗时的过程。为了解决深度学习中巨大的计算难题,许多工具利用了多核 CPU 和超多核 GPU 这样的硬件特性来缩短训练时间。但是,在不同的硬件平台上训练不同类型的深度网络时,不同的工具会有不同的特性和运行性能,这让终端用户难以选择出合适的软件和硬件搭配。

在这篇论文中,团队的目标是对当前最先进的 GPU 加速的深度学习软件工具(包括:Caffe、CNTK、MXNet、TensorFlow 和 Torch)进行比较研究。团队将在两种 CPU 平台和三种 GPU 平台上使用三种流行的神经网络来评测了这些工具的运行性能。

团队做出了两方面的贡献:

  1. 对于深度学习终端用户,我们的基准评测结果可用于指导合适的软件工具和硬件平台的选择。
  2. 对于深度学习软件开发者,我们的深度分析为进一步优化训练的性能指出了可能的方向。

评测软件工具、算法

测试环境

对于数据并行的测试硬件:

单 CPU 卡评测结果

根据团队之前的研究,在 CPU 平台上测试特定的 mini-batch 大小 d 的实验能够获得最好的运行时间表现。不同网络使用的 mini-batch 的大小如表所示:

在单 GPU 卡的对比上,我们也展示了不同 mini-batch 大小的结果,从而演示 mini-batch 大小对表现的影响。

多 GPU 卡评测结果
FCN-R:在我们的测试中,mini-batch 的大小设置为 4096,结果如图 16 所示。在图 16(a) 中,我们可以看到 Caffe、CNTK 和 MXNet 的速度非常接近单 GPU 的情况;而在 TensorFlow 和 Torch 上的表现则相对好一点。当 GPU 数量翻倍时,CNTK 和 MXNet 的可扩展性最好,均实现了约 35% 的提速,Caffe 实现了大约 28% 的提速,而 Torch 和 TensorFlow 较差,只有约 10%。当我们把 GPU 数量从 2 个增加到 4 个时,TensorFlow 和 Torch 没有实现进一步的提速。

整体评测数据

  • fcn5

  • alexnet

结论

本次研究旨在对比现代深度学习软件工具的运行性能,测试它们在不同类型的神经网络和不同的硬件平台上的执行效率。团队通过实验结果表明,目前所有经过测试的工具都可以很好地利用 GPU,和使用 CPU 相比有着很大优势。然而,没有任何一个工具可以在所有方面胜过其他软件工具,这意味着也许存在进一步优化性能的方向。

在未来的研究中,首先,团队会将更多的深度学习软件工具(如百度的 Paddle)和硬件平台(如 AMD 的 GPU 和英特尔 XeonPhi)纳入这项基准研究。其次,团队计划评估在高性能 GPU 集群上这些工具的可扩展性。

附录
论文第二版
论文第三版,更新于 2016 年 9 月 3 日
论文第四版,更新于 2016 年 9 月 11 日
论文第五版,更新于 2016 年 9 月 19 日
论文第六版,更新于 2017 年 1 月 25 日
论文第七版
源代码下载地址


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-08-08 19:005194
用户头像

发布了 50 篇内容, 共 30.8 次阅读, 收获喜欢 40 次。

关注

评论

发布
暂无评论
发现更多内容

1 理解功能、业务功能和能力

涛哥 数字产品和业务架构

企业架构 业务架构 业务架构师

2023 年推荐这 10 个开发者工具

Liam

前端 后端 开发者工具 开发工具 程序员 java

详解 k8s 中的 RBAC

HummerCloud

云原生 k8s

TiDB 6.5 新特性解析丨过去一年,我们是如何让 TiFlash 高效又稳定地榨干 CPU?

PingCAP

TiDB

软件测试/测试开发 | app自动化测试(Android)--触屏操作自动化

测试人

软件测试 自动化测试 测试开发 appium

2024最新easyrecovery数据恢复软件免费版

茶色酒

EasyRecovery15

过年回去,终于给老人讲清楚两台电脑是如何通信的

华为云开发者联盟

后端 开发 华为云 企业号 2 月 PK 榜 华为云开发者联盟

StarRocks市场渗透率跻身Top10!

StarRocks

数据库

OpenMLDB 社区月报 | 2023 年 1 月

第四范式开发者社区

人工智能 机器学习 数据库 开源 特征

StarRocks荣获开源中国“2022 年度优秀开源技术团队”

StarRocks

数据库

特定领域知识图谱融合方案:文本匹配算法(Simnet、Simcse、Diffcse)

汀丶人工智能

自然语言处理 知识图谱 2月日更

打造合规数据闭环,加速自动驾驶技术研发

Baidu AICLOUD

自动驾驶 数据闭环

软件测试/测试开发 | app自动化测试(Android)--显式等待机制

测试人

软件测试 自动化测试 测试开发 appium app自动化测试

采购LED显示屏时必须了解哪些技术参数?

Dylan

LED显示屏 全彩LED显示屏 led显示屏厂家

开发小白的高光逆袭:竟然能一眼断定生产环境接口响应时间慢是磁盘性能问题引起的

KINDLING

Java 故障定位 ebpf 生产环境 排障

手把手教您在PyCharm中连接云端资源进行代码调试

华为云开发者联盟

人工智能 华为云 企业号 2 月 PK 榜 华为云开发者联盟

顶会论文 | 虚拟网络探测技术的探索与实践

阿里技术

网络运维 虚拟网络探测

城市健康云,打造大健康服务生态

华为云开发者联盟

云计算 后端 华为云 企业号 2 月 PK 榜 华为云开发者联盟

会声会影2023中文版操视频剪辑软件下载

茶色酒

会声会影2023

PingCAP 黄东旭万字长文剖析数据库发展新趋势:脱离应用开发者的数据库,不会成功

PingCAP

数据库 TiDB

如何将使用中的域名平滑迁移到京东云?(以原域名注册、域名解析都在万网为例)

京东科技开发者

域名解析 注册 京东云 京东商城 企业号 2 月 PK 榜

重塑设备维护管理的主要趋势

PreMaint

设备健康管理 设备管理

跨境电商“重新出发”,区块链赋能新玩法

旺链科技

区块链 区块链技术 区块链技术应用

零基础前端培训学习有用吗

小谷哥

奇安信首次盈利,网络安全国家队将迎来收获期?

ToB行业头条

网络安全

自动驾驶工具链及仿真平台的应用

Baidu AICLOUD

自动驾驶 工具链

百度智能云助力自动驾驶全链路研发

Baidu AICLOUD

自动驾驶 全链路

随机高并发查询结果一致性设计实践

京东科技开发者

架构设计 并发 业务场景 企业号 2 月 PK 榜 京东物流

如何解决Mac电脑突然变得又卡又慢的处理方法

茶色酒

为什么我在公司里访问不了家里的电脑?

Java 计算机网络 网络协议

国资委79号文解读:国央企OA办公系统信创替代落地实践与标杆案例

数字科技时讯

信创 电子合同 电子签名 企业国产化 OA

业界主流深度学习工具的基准评测_语言 & 开发_麦克周_InfoQ精选文章