写点什么

从 eBay 购物车丢失看处理网络 I/O

  • 2017-07-20
  • 本文字数:2527 字

    阅读完需:约 8 分钟

eBay 的购物车信息存储依赖于两个不同的数据存储介质,MongoDB 存储用户完整的购物车信息,Oracle 仅存储购物车的大致信息,但是可以通过关键信息查找所有的购物车信息。在 eBay 的这套系统里,MongoDB 更多被用来充当“缓存”,Oracle 数据库作为存储副本。如果数据在 MongoDB 里面找不到了,服务会从 Oracle 里面重新抽取(恢复)数据,然后重新计算用户的购物车。

所有的购物车数据都是 JSON 格式的,JSON 数据在 Oracle 里被存储在 BLOB 格式的字段里。这些 Oracle 里面的数据只能被用于 OLTP 交易。

这篇文章并不是讨论数据库技术的选择(Oracle vs MongoDB,或者其他数据),而是希望能够让大家在巨量访问系统(每天上百万次调用)中找到技术债,理解如何解决问题。

问题描述

2016 年秋天开始,购物车服务出现了缓存层丢失数据的情况,同时,运维团队报告 MongoDB 的备份机制多次出现失败(MongoDB 运行在主从模式)。eBay 的这个服务已经运行了 5 年时间,一直没有出现问题,没有做过任何架构调整和大规模代码改变,需要尽快找到原因和防治办法。针对实际问题进行反复检查,发现 MongoDB 的 oplog(实时性要求极高的写日志记录)正在达到网络 I/O 限制。每一次的数据丢失,都会触发保护措施(再次从 Oracle 读取数据后重复计算),并进一步加长用户的等待时间。

解决方案

在我们具体讨论特定的解决方案前,我们希望去尽可能多地讨论解决方案。例如,一旦备份机制没有启用,是否可以通过隐藏一些副本方式让系统能够正常运行,而不要在系统特别繁忙的时候去尝试重新备份。我们可以尝试超时机制和阶段性副本方式,但是这些方式并不会引起我们本文说的问题发生。

方案一:切片(MongoDB)

团队成员提出对 JSON 数据进行切分,即对原先存储在 MongoDB 里的原子化的购物车信息(一个 JSON 字符串),切分为多个字符串,这样做的好处是可以减少单一 MongoDB 中心节点的写入次数和网络开销。

对于数据切分后的关联方式,远比数据切分、负载均衡复杂,因此,第 1 种方案的选择会引入其他技术难点,需要我们自己能够寻找被切分后的数据的关联性,这就是为什么 eBay 放弃了这个方案。

方案二:有选择的写入

使用 MongoDB 的 set 命令,只针对当特定值发生更改后,才启动写入操作。这种方式理论上也是可行的。

但是如果你真正考虑一下,这种做法没有从根本上确保减少 oplogs 写入次数,但是它很有可能会造成整个文档的更新。

了解一下 MongoDB 的 Set 操作模式。Set 操作可以用于使用特定值替换字段值:

{$Set{:,…}}

假如你考虑一下描述产品的文档如下所示:

{
_id:100, sku:”abc123”, quantity:250, instck:true, reorder:false, details:{model:”14Q2”,make:”xyz”}, tags:[“appeal”,”clothing”],
ratings:[{by:”ijk”,rating:4}] }

对于满足 _id 等于 100 的文档,执行 set 操作更新 quantity 字段、details 字段和 tags 字段的值。

db.products.update( {_id:100}, {$set:
{
quantity:500,
details:{model:”14Q3”,make:”xyz”},
tags:[“coats”,”outerwear”,”clothing”]
} } )

以上这个操作替换 quantity 的值为 500,details 字段的值为一个新的嵌入式文档,tags 值为一个数组。

方案三:客户端压缩

考虑到需要尽快解决问题,所以需要尽量避免重写业务逻辑,压缩方式看起来是比较好的一中了。减少进入 MongoDB 的 Master 节点的数据量,这样可以减少写入 oplog 的数据规模。但是,这种方式会将 JSON 字符串转变为二进制文章,操作时也需要解压缩。

常用的压缩算法主要有:deflate、gzip、bzip2、lzo、snappy 等。差别如下所示:

  1. deflate、gzip 都是基于 LZ77 算法与哈夫曼编码的无损数据压缩算法,gzip 只是在 deflate 格式上增加了文件头和文件尾;
  2. bzip2 是 Julian
    Seward 开发并按照自由软件 / 开源软件协议发布的数据压缩算法,Apache 的 Commons-compress 库中进行了实现;
  3. LZO 致力于解压速度,并且该算法也是无损算法;
  4. LZ4 是一种无损数据压缩算法,着重于压缩和解压缩速度;
  5. Snappy 是 Google 基于 LZ77 的思路用 C++ 语言编写的快速数据压缩与解压程序库,2011 年开源。它的目标并非最大程度地压缩,而是针对最快速度和合理的压缩率。

目标和考虑

在我们开始做这一功能性测试之前,我们需要明确几个目标。

  • 允许购物车被压缩并持久化到 MongoDB(数据不会有改变)。
  • 允许压缩编码方式的选择,支持采用一种编码方式读取,另一种编码方式写入。
  • 允许读到老的、新的、中间状态的购物车信息,新老前后可以互相兼容。
  • 压缩和解压缩的操作可以同时进行。
  • 确保没有针对 MongoDB 数据库的实时 JSON 数据检索查询请求。

JSON 字符串例子

这是老的 JSON 字符串:

{ “_id” : ObjectId(“560ae017a054fc715524e27a”), “user” : “9999999999”,
“site” : 0, “computeMethod” : “CCS_V4.0.0”, “cart” : “…JSON cart
object…”, “lastUpdatedDate” : ISODate(“2016-09-03T00:47:44.406Z”) }

这是压缩之后的 JSON 字符串:

{ “_id” : ObjectId(“560ae017a054fc715524e27a”), “user” : “9999999999”,
“site” : 0, “computeMethod” : “CCS_V4.0.0”, “cart” : “…JSON cart
object…”, “compressedData” : { “compressedCart” : “…Compressed
cart object…” “compressionMetadata” : { “codec” : “LZ4_HIGH”,
“compressedSize” : 3095, “uncompressedSize” : 6485 }, },
“lastUpdatedDate” : ISODate(“2016-09-03T00:47:44.406Z”) }

测试结果

通过使用相同的购物车数据进行测试,观察 CPU 或者 I/O 情况,数据如图所示:


结论

oplog 的写入速率,从 150GB/ 小时下降为大约 11GB/ 小时,下降了 1300%!文档的平均对象大小从 32KB 下降为 5KB,600% 的下降。此外,服务的响应时间也有所改善。数据如图所示:

下面这张图显示的是 MongoDB 的 Ops Manager UI 工具信息,特别标注了压缩和解压缩数据的耗时,以及文档的平均对象大小的下降数据。

最终,对于生产环境下的随机一小时数据压缩,eBay 团队也收集了一些指标图,用于更多的深入观察。


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-07-20 19:004211
用户头像

发布了 50 篇内容, 共 31.6 次阅读, 收获喜欢 40 次。

关注

评论

发布
暂无评论
发现更多内容

稳若磐石的焱融 SaaS 服务平台背后,是数据生态的崛起

焱融科技

云计算 分布式 高性能 公有云 文件存储

web技术分享| LRU 缓存淘汰算法

anyRTC开发者

缓存 音视频 WebRTC LRU web技术分享

学不懂Netty?看不懂源码?不存在的,手把手带你阅读Netty源码

热爱java的分享家

Java 架构 程序人生 编程语言 经验分享

数仓如何限制临时数据文件下盘量

华为云开发者联盟

sql 线程 GaussDB(DWS) 临时文件 落盘

模块四作业

Geek_1d37ea

架构训练营

压缩比达到7:1,TDengine助力校园智慧用电系统降本增效

TDengine

tdengine 时序数据库

一文带你快速掌握PTN网络的路由计算

鲸品堂

奖金翻倍!Flink Forward Asia Hackathon 最新参赛指南请查收

Apache Flink

大数据 flink 编程 后端 hackathon

openGauss开源自动化测试框架Yat,增强社区测试能力

云原生时代:看 Apache APISIX 如何玩转可观测性

API7.ai 技术团队

云原生 可观测性 Skywalking API网关 Apache APISIX

[SpringBoot源码分析]SpringBoot如何启动

零点999

spring SpringBoot 2

Kubernetes 已经成为云原生时代的安卓,这就够了吗?

阿里巴巴云原生

阿里云 Kubernetes 云原生 学习资料 应用管理平台

WICC 花城登场,揭秘时代变局下通信服务新形态

融云 RongCloud

开发者 社交 元宇宙 泛娱乐 通信云技术大会

和 VMware、深信服、天翼云、招商云专家一起聊聊云原生边缘计算

阿里巴巴云原生

阿里云 容器 云原生 KubeMeet 线下活动

【概率】抽屉中的袜子

潮汐朝夕

概率

灵犀平台—API的全可视化开发

鲸品堂

开发者 工具

又添权威认定,旺链科技通过可信区块链专项认证!

旺链科技

区块链 产业区块链 技术测评 数字化经济

0.99M,150FPS,移动端超轻量目标检测算法PP-PicoDet来了!

百度大脑

人工智能 百度

Meetup 报名|开源分布式数据库探索和应用

OceanBase 数据库

数据库 分布式 活动 技术交流 oceanbase

一张图 GET 社交泛娱乐出海大招

融云 RongCloud

Forrester发布首份《中国低代码平台发展报告》,有多少企业应用低代码?

J2PaaS低代码平台

敏捷开发 低代码 低代码开发 低代码平台 低代码报告

100行代码,轻松搞定文本编辑器中草稿箱

Tom弹架构

Java 架构 设计模式

“愚公移山”的方法解atoi,自以为巧妙!

老表

Python LeetCode 11月日更 算法与数据结构

DevEco Testing,新增分布式测试功能|HDC2021技术分论坛

HarmonyOS开发者

HarmonyOS

软件开发除了23种设计模式,还有7个开发原则需要了解

华为云开发者联盟

设计模式 软件开发 开发 对象 SOLID

应用不停机发布的思考与初识

陈俊

高可用 技术架构 不停机发布

OpenHarmony驱动框架解读和开发实践|HDC2021 技术分论坛

HarmonyOS开发者

HarmonyOS

模块四学习总结

Geek_1d37ea

架构训练营

HarmonyOS内核技术大揭秘|HDC2021技术分论坛

HarmonyOS开发者

HarmonyOS

Sechunter移动应用隐私合规检测详解

华为云开发者联盟

移动应用 目标检测 隐私 Sechunter 隐私合规

售后支持领域的服务指标

Geek_utwige

方法论 技术管理 指标体系 数据指标 客户服务

从eBay购物车丢失看处理网络I/O_语言 & 开发_麦克周_InfoQ精选文章