Python 还能承担下一个时代的发展重任吗?Mojo 语言的横空出世对 AI 研发生态有什么影响? 了解详情
写点什么

AIOps 是什么?它与 AI 有什么关系?

  • 2017-06-26
  • 本文字数:1673 字

    阅读完需:约 5 分钟

现如今,AI 这个词已经被玩坏了。很多公司都声称自己在做 AI,但其实并没有。不过有另外一种新兴的 AI,各种类型的 IT 企业倒是可以尝试,而且完全不需要人工参与。

AIOps,也就是基于算法的 IT 运维(Algorithmic IT Operations),是由 Gartner 定义的新类别,源自业界之前所说的 ITOA(IT Operations and Analytics)。我们已经到达了这样的一个时代,数据科学和算法正在被用于自动化传统的 IT 运维任务和流程。算法被集成到工具里,帮助企业进一步简化运维工作,把人类从耗时又容易出错的流程中解放出来。人们不再需要在遗留的管理系统中定义和管理无穷无尽的规则和过滤器。

在过去的几年间,一些新技术不断涌现,利用数据科学和机器学习来推进日益复杂的企业数字化进程,“AIOps”(Algorithmic IT Operations)因此应运而生。Gartner 的报告宣称,到 2020 年,将近 50% 的企业将会在他们的业务和 IT 运维方面采用 AIOps,远远高于今天的 10%。

为了更好地理解 AIOps 和 AI 的区别,我们需要从头说起。

AI 简史

AI 一词用于描述机器(或软件)模拟人类认知的过程。也就说,机器学习像人类一样思考。40 年代,Alan Turing 掀起了 AI 热潮,但受限于计算机的计算能力,也只发展到今天的这个阶段。

问题是,我们为什么要让机器模仿人类?而为什么有些 AI 应用程序会比其他的更成功?发展 AI 的目的在于解决人类的问题,所以我们会看到像自动驾驶汽车、行为分析这类复杂的解决方案。

话说回来,IT 运维环境有一些不一样的地方。我们不会直接管理人类,我们与应用程序和基础设施打交道。而且它们可能更加复杂和不可预测,因为它们不是人类。

人类思维与机器思维

AIOps 的不同之处在这里体现出来。AIOps 的解决方案专注于解决问题,而且是通过使用基于算法的技术来高度模仿人类(而且以更快的速度和更大的规模)。算法的效率提升了 AIOps 的价值,而相对于人类的智慧——虽然是无限的,但不如机器来得高效。

当然,人类也能进行高效的 IT 运维。AIOps 的目的是为了让我们的生活变得更美好,但是当人类与 AIOps 参合在一起,它们之间的界限就会变得模糊。高级的 AIOps 会使用神经网络技术,它会向运维人员学习,然后尝试消除无聊的重复性劳动。

未来的公司

为什么公司需要 AIOps?现代的 IT 环境已经无比的复杂,而且千变万化,需要我们花费大量的时间和资源去监控、去诊断问题、去解决问题。很多公司处于被动的地位。但是如果他们使用了 AIOps,他们就可以利用先进的算法,花更多时间在其他更有意义的工作上,而不是重复地解决相同的问题,或者花时间管理规则和过滤器。

我们所说的规则,可以把它们简单地描述为“如果是这样那么就这么做”,它们能够应付简单的场景,但是很难扩展。相反,算法和机器学习提供了更加灵活的表达方式,不仅强大,而且健壮,能够应付不断变化的需求。这将带来更高的效率和更低的成本。对于厂商来说,他们面临的挑战在于将整个技术方案打包,避免把用户暴露于底层的复杂性当中。光是提供工具是不够的,企业需要招聘数据科学家而不仅仅是工程师。

前行之路

借助智能算法的技术优势,原先人工需要几个小时完成的任务现在通过自动化可以在几秒钟内完成,而且能够得到更好的结果。传统的 IT 运维需要管理大量的告警,极大地分散了企业的注意力,他们需要花很多时间解决无聊的问题,没有时间用于创新。使用 AIOps 可以解决这些问题,把运维人员从纷繁复杂的告警和噪音中解脱出来。各个行业的企业正在采用 AIOps,他们使用这项技术来改进客户的数字体验——银行、娱乐、交通、零售,甚至政府。

尽管 AIOps 还是一个新名词,但并不代表它只是未来的一种趋势而已。在这个数字的年代,任何使用传统技术来管理机器数据的组织要么忽略了信息的价值,要么已经让他们的运维团队不堪重负。随着数据的暴涨,CIO 们应该快速拥抱 AIOps。传统 AI 仍然会在某些领域发挥它的作用,而 AIOps 将为企业带来最直接最深远的价值。


感谢木环对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-06-26 19:0010368
用户头像

发布了 321 篇内容, 共 128.2 次阅读, 收获喜欢 139 次。

关注

评论

发布
暂无评论
发现更多内容

喜提双奖 | 旺链科技彰显综合硬实力!

旺链科技

区块链 产业区块链 供应链

鲲鹏HCIA认证之初识鲲鹏

桥哥技术之路

鲲鹏

盘点 2021|不忘初心,扬风起航

小鲍侃java

盘点2021

腾讯云原生数据库TDSQL-C斩获2021 PostgreSQL中国最佳数据库产品奖

科技热闻

酷炫3D效果在瘦设备上也能实现?|HDC2021技术分论坛

HarmonyOS开发者

HarmonyOS

在线JSON转Csharp工具

入门小站

工具

发布你的开源软件到 Ubuntu PPA

hedzr

#Ubuntu Debian packaging ppa

重装上阵——Graviton2提升Aurora性价比

亚马逊云科技 (Amazon Web Services)

Data

JAVA 开发常用工具汇总

编程江湖

java编程

Apache APISIX 社区双周报 | 功能亮点更新进行中

API7.ai 技术团队

云原生 后端 开源社区 api 网关 Apache APISIX

升级过log4j,却还没搞懂log4j漏洞的本质?

华为云开发者联盟

Java log4j 漏洞 JNDI rmi

内核干货不容错过,龙蜥内核的Load Averages剖析直播回顾上线了

OpenAnolis小助手

Linux Kenel 内核 龙蜥社区

解析Redis操作五大数据类型常用命令

华为云开发者联盟

数据库 redis string 数据类型 getset

web技术分享| 白板SDK的几种图形检测算法

anyRTC开发者

前端 音视频 白板 web技术分享 图形检测算法

DotNet工具箱之性能监控组件——CLRStats

为自己带盐

dotnet 28天写作 12月日更

Linux之more命令

入门小站

Linux

Go编译原理系列2(词法分析&语法分析基础)

书旅

Go 后端 编译原理

如何将Amazon RDS与Amazon Aurora数据库迁移至Graviton2?

亚马逊云科技 (Amazon Web Services)

Data

​使用 Amazon Neptune 通过数据仓库构建知识图谱,借此补充商务智能体系

亚马逊云科技 (Amazon Web Services)

Data

MySQL 中 blob 和 text 数据类型详解

Simon

MySQL

(转)前端开发之MySQL分区表中的性能BUG

@零度

MySQL 前端

2021数据技术嘉年华 | OceanBase 技术盛宴ON LINE ,我们不见不散!

OceanBase 数据库

数据库 OceanBase 社区版 技术嘉年华 DTC

一文带你梳理Clang编译步骤及命令

华为云开发者联盟

编译 LLVM Clang编译 Clang 编译命令

DM 分库分表 DDL “悲观协调” 模式介绍丨TiDB 工具分享

PingCAP

「山东城商行联盟」数据库准实时数据采集系统上线,DataPipeline助力城市商业银行加快数字化转型

DataPipeline数见科技

数据库 中间件 数据同步 数据融合 数据管理

java开发之SSM开发框架

@零度

Java ssm

盘点2021 | 技术十年-记录十年技术经历

高性能架构探索

技术人 工作经历 经历分享 盘点2021

化繁为简--百度智能小程序主数据架构实战总结

百度Geek说

小程序 百度 架构 后端 数据

蓝格赛(中国)用TDengine落地聚合查询场景,效果如何?

TDengine

数据库 tdengine 后端

孩子,你为什么要上学?

Tiger

28天写作

10 个打造 React.js App 的最佳 UI 框架

编程江湖

前端开发

  • 扫码加入 InfoQ 开发者交流群
AIOps是什么?它与AI有什么关系?_语言 & 开发_薛命灯_InfoQ精选文章