写点什么

HN 网友分享 AI 在企业中的应用案例

  • 2016-12-27
  • 本文字数:1685 字

    阅读完需:约 6 分钟

2016 年,AI 在企业中的应用情况达到了怎样的程度?在 12 月的一篇 Hacker News 讨论帖中,诸多网友分享了其公司内部应用机器学习技术的情况。

数据的清洗、统计、建模、预测

为了追热点,这年头的大部分数据公司都说自己的产品服务用了机器学习。这相当引人争议——比如,线性回归算是机器学习吗?有人说是,因为机器学习的教程就是从线性回归开始的;有人说不是,因为这种基本的统计计算早在“机器学习”这个概念出来之前就有人在用了。

到底,怎样的系统有资格被称为“机器学习”系统呢?有人搬出了 Tom Mitchell 一段定义

“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”

比如你写了个下棋的程序,然后让它天天自己跟自己下棋玩;过了一段时间,如果你发现它的棋力提升了,那就证明它具备学习能力。同理,如果你写了一个预测的程序,然后让它天天看各种历史数据;过了一段时间,如果你发现它的预测准确率提升了,那就证明它具备学习能力。(不过反过来,这样的定义却无法证明一个系统不具备学习能力……)

有些数据处理系统并不具备学习功能。很多数据处理系统并不需要具备学习功能。不过,机器学习的能力正在越来越多的应用到数据处理的场景中,这是毋庸置疑的。尤其在金融行业,制作风险模型、进行花费预测、损失预测,都有广泛的应用。比较有趣的是有人提到 Numerai ,这里聚集了一大批给股市建模的数据科学家,大家把自己的预测拿出来公开比赛。

此外,有一个用户 @splike 表示他们的系统可以预测一次基因编辑操作(CRISPR)的有效程度。还有一个叫做 Queckt 的系统可以预测一个 JIRA 工单需要多久能被解决。(话说这系统是要用来对付产品经理的么……)

客户管理 KYC

几乎半数的回复都涉及客户管理方面的应用,如:

  • Amazon Personalization ,亚马逊的个性化推荐系统
  • Coursera 的个性化课程推荐系统
  • 预测客户流失,如 AppURI
  • 金融 / 电信行业反欺诈服务,如 SkyMind
  • 从众多的客户留言中自动筛选出那些“不高兴的客户”

模式识别

  • 有一位来自制造业的用户 @altshiftprtscrn 表示他们用声学显微镜进行次品检测,用决策树模型提升系统识别次品的正确率
  • @strebler 就职于一家计算机视觉公司,该公司开发了几个针对零售商的产品,可以根据图像自动识别商品并提供后续服务
  • Sumo Logic ,针对大规模服务器集群(主要是 AWS 和 Azure 应用)分析系统日志以协助故障排查。 SkyMind 也提供了类似的服务针对 OpenStack 部署。 Graphistry 也提供类似的服务
  • Persyst ,用神经网络学习脑电图 / 心电图,识别各种疾病的症状
  • Qualia.ai ,识别网络舆论上出现的新生热门话题
  • Matterport ,针对房地产行业,其系统根据摄像师提供的房屋全景照片制作 3D 模型与介绍视频
  • Attentive.ai ,针对安防摄像头拍到的录像进行分析,自动抽取其中的“异常事件”并发送报警
  • Diffbot ,自动抓取网页中的纯内容,移除与内容无关的页面元素。John Davi在 Quora 上介绍过 Diffbot 用来提高抓取准确度的算法

决策助理

  • 用户 @iamed2 的系统能够为电网中的交互行为建模,从而提供建议以优化电网的效率。他说,“如果你很了解你的数据关系,那么机器学习也许对你是没用的。但如果你不了解你的数据关系,那么机器学习就变得很有用了。”
  • 用户 @ilikeatari 的系统能够针对用户的用车历史提供建议,告诉他们何时把旧车卖掉再买入新车是最划算的。目前,他们的客户主要是美军舰队
  • Optimail ,邮件推广自动化,自动抓取你的网站以生成推广邮件 / 短信,配合强化学习算法以提升推广成功率

总结

2016 年初, mldb 博客上发布了一篇文章:《当机器学习遇到经济世界》(文章第二部分在此)。到2016 年底,正如用户 @strebler 在帖子中所说,“AI/ML 在最近这段时间的发展,真真切切的将之前的一些不可能化为了可能“。2017 年,这个领域的发展将更加值得关注。


感谢郭蕾对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2016-12-27 18:001670

评论

发布
暂无评论
发现更多内容

愚蠢写作术(3):如何把读者带入迷宫深处

史方远

学习 读书笔记 个人成长 写作

Flink源码分析之Flink startupMode是如何起作用的

shengjk1

flink flink 消费 kafak 实时计算 flink源码 flink源码分析

ARTS-WEEK2

一周思进

ARTS 打卡计划

程序员陪娃系列——数学启蒙趣事

孙苏勇

程序员 陪伴

人人都是产品经理

二鱼先生

产品经理 个人品牌 职场成长 产品思维

食堂就餐卡管理系统

孙志平

程序员的晚餐 | 6 月 7 日 豆腐年糕

清远

美食

因为 MongoDB 没入门,我丢了一份实习工作

沉默王二

mongodb

架构师训练营-命题作业1

水边

极客大学架构师训练营

Flink源码分析之-如何保存 offset

shengjk1

食堂就餐卡系统设计

飞雪

【ARTS打卡】Week02

Rex

架构师训练营-每周学习总结1

水边

极客大学架构师训练营

每周学习总结-架构师培训一期

Damon

Flink源码分析之Flink 自定义source、sink 是如何起作用的

shengjk1

flink flink源码 flink源码分析 flink自定义source flink自定义sink

架构师训练营第一周作业

小树林

LeetCode 769. Max Chunks To Make Sorted

liu_liu

LeetCode

极客时间-架构师培训-1期作业

Damon

架构方法学习总结

飞雪

Flink源码分析之Flink是如何kafka读取数据的

shengjk1

flink flink 消费 kafka flink源码分析 flink消费kafka源码解析

Flink源码分析之FlinkConsumer是如何保证一个partition对应一个thread的

shengjk1

flink flink 消费 kafka 实时计算 flink源码分析

食堂就餐卡系统设计

刘志刚

食堂就餐卡系统设计

饶军

SpringBatch系列之并发并行能力

稻草鸟人

Spring Boot SpringBatch 批量

架构师训练营第一周学习总结

刘志刚

dnsmasq-域名访问及解析缓存

一周思进

ARTS打卡 week 2

猫吃小怪兽

ARTS 打卡计划

SpringBoot基本特性以及自动化配置-SPI机制

攀岩飞鱼

Java 微服务 Spring Boot SpringCloud

不可不知的 7 个 JDK 命令

武培轩

Java 程序员 jdk 后端 JVM

Element-UI实战系列:Tree组件的几种使用场景

AR7

vue.js 大前端 Elemen

架构师训练营第一周作业

芒夏

极客大学架构师训练营

HN网友分享AI在企业中的应用案例_语言 & 开发_sai_InfoQ精选文章