写点什么

Julien Le Dem 对使用 Apache Arrow 进行面向列的数据处理的未来的看法

  • 2016-12-22
  • 本文字数:1620 字

    阅读完需:约 5 分钟

Julien Le Dem 是 Apache Parquet 的合著者,也是 Apache Arrow 项目的项目管理委员会成员,他在 Data Eng Conf NY 上介绍了面向列的数据处理的未来。

Apache Arrow 是在内存中执行列式计算的开源标准,源于 Apache Drill 的内存列式数据结构。Apache Arrow 旨在成为有效地在内存中保存数据并在不同执行引擎之间交换数据的事实上的方式,从而避免序列化。它由 13 个开源项目的主要开发人员提供支持,这些开源项目主要来自 Apache,包括 Calcite Drill Pandas HBase Spark Storm

InfoQ 采访了 Le Dem,以了解 Arrow 和 Parquet 的区别以及二者如何能支持更高效的跨执行引擎的计算。Parquet 是一个磁盘上的列式存储格式。

InfoQ:你觉得 Apache Arrow 会像 Parquet 一样在 Apache Spark 这样的执行引擎上商品化(commoditized)吗?你认为它会缩小引擎间的性能差距吗?

Le Dem: MonetDB 开始,矢量化执行是最先进的高效查询处理方式。 许多开源查询引擎正在转向这个模型,我们认为有必要标准化内存中的列式表示以提供极高效的互操作性。Parquet 提供的列式存储功能,Arrow 以内存中的列式处理和互换提供了。

这些标准化努力极大地简化了存储层、查询引擎、 DSL UDF 之间的集成,并通过消除序列化提供了更高效的通信层。通过消除公共的瓶颈,标准化让所有系统进行互操作变得更简单、更便宜、更快速了。然而,通过提供专业的技术进一步提升性能,比如基于压缩向量的操作或者更智能的查询优化器,每个执行引擎还有很大的创新空间。

InfoQ:Apache Parquet 支持谓词下推(predicate pushdown),避免了只要页面不包含匹配谓词的数据就从磁盘读取数据的问题。Apache Arrow 的数据结构包含类似的功能吗?

Le Dem:它们在从磁盘读数据和从内存读数据的取舍上是不同的。当前,谓词下推的实现取决于引擎。虽然还没有开始,但是 Apache Arrow 最终会提供能跨引擎重用的快速矢量化操作。

InfoQ:Arrow 的目标之一是提供对内存数据的恒定时间访问,并通过 SIMD 指令支持矢量化操作。 Arrow 也像 Parquet 一样提供内存数据压缩吗?

Le Dem: Arrow 支持字典编码,能提供优秀的压缩效果,让聚合和连接这类操作更快地运行。现在也有一个正在进行的讨论,要使用像 snappy 或者 gzip 这样的通用算法来提供泛化的缓冲压缩。

在这个初始版本中,Arrow 还不支持其他压缩技术,如位打包(bit packing)。然而,在使用标准向量进行数据交换的前提下,我们打算让执行引擎能够定义自定义向量。这将允许更高级的技术,例如直接操作压缩向量。 我想到的一个例子是威斯康星大学 BitWeaving 项目。 在将来,标准向量的集合将会扩充。

Arrow 的第一个版本提供了Pandas 库、Arrow 和Parquet 之间的基于C++ 的本地集成,让Arrow 的Record Batches 能作为 Pandas 的 dataframe 操作并暴露给像 Apache Drill 这样的基于 Hadoop 的 SQL 引擎(SQL-on-Hadoop engine)。

InfoQ:Apache Arrow 支持互操作,让数据不需要序列化就可以在进程间传输。你能点评一下 Arrow 的 IPC 层的能力吗?

Le Dem: IPC 层仍然处于试验阶段,它是一个真正的零复制(zero-copy)层。当 Arrow 的 Record Batch 完成时,它变成不可变的。在此状态下,它可以使用共享内存以只读模式与其他进程共享,而不必担心并发访问。矢量表示独立于其内存地址(不需要绝对指针),并且可以安全地用在共享内存中,每个进程看到的缓冲器地址是不同的。

InfoQ:与 Parquet 一样,Apache Arrow 支持嵌套数据类型。它当前支持哪些类型,哪些类型在计划中呢?

Le Dem: Arrow 支持所有常见的数据类型。这是迄今为止相当全面的一份列表了。最近又添加了一些类型,包括 SQL 的 Timestamp 和 Interval。

查看英文原文: Julien Le Dem on the Future of Column-Oriented Data Processing with Apache Arrow


感谢冬雨对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2016-12-22 18:003714
用户头像

发布了 33 篇内容, 共 12.9 次阅读, 收获喜欢 10 次。

关注

评论

发布
暂无评论
发现更多内容

对混沌工程的五个常见误解

混沌工程实践

混沌工程 故障注入 误区 生产事故 监管合规

重读《重构2》- 提炼变量

顿晓

重构 4月日更

PHP自动加载原理

Sakura

4月日更

最全 MongoDB 基础教程

若尘

数据库 mongodb mongo

透气胶浆、无手感透气胶浆

C13713145387

透气胶浆 仿拔印浆 无手感透气浆

SpringCloud(Netflix)-技术专题-自定义配置Ribbon

码界西柚

SpringCloud Ribbon

全球案例 | NTT:Atlassian 帮助我们重塑危机中的可能性

Atlassian

敏捷 团队协作 数字化转型 Atlassian Jira

Modbus协议在串行链路上的实现

不脱发的程序猿

通信协议 物联网常用协议 4月日更 Modbus 串行通信

「 留言参与 」—— InfoQ 写作平台【 1 周年盛典 】

InfoQ写作社区官方

1 周年盛典 热门活动

第一篇测试

童童

架构训练营

应对海量时序数据,华为云GaussDB(for Influx)有妙招

华为云开发者联盟

云原生 数字化转型 时序数据 华为云GaussDB

《采访彩食鲜 CTO 乔新亮:如何从一名程序员晋阶为CTO》(采访提纲)

石云升

28天写作 4月日更 调查采访能力考核

Modus串行链路系统电气特性:2线-Modus、4线-Modus、RS232-Modus和RS485-Modus的特性

不脱发的程序猿

通信协议 4月日更 Modus 串行链路 RS232、RS485

LeetCode题解:剑指 Offer 49. 丑数,三指针,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

SpringCloud(Netfix)-技术专题-服务注册与发现

码界西柚

SpringCloud

多年后,我终于看清了比特币的本质

陈东泽 EuryChen

比特币 区块链

投资的狠人,往往是这样的

陈东泽 EuryChen

比特币 区块链 投资 李笑来 debank

【LeetCode】实现 Trie (前缀树)Java题解

Albert

算法 LeetCode 4月日更

BOE(京东方)2020年报发布: 营收1355.53亿元 净利润大幅增长162.46%

防晒衣专用水性油墨说明书

C13713145387

防晒衣专用水性油墨 防水尼龙水性油墨

Linux grep 命令

一个大红包

4月日更

联邦学习,为何而生?

博文视点Broadview

华为云PB级数据库GaussDB(for Redis)揭秘第七期:高斯Redis与强一致

华为云开发者联盟

redis 华为云 GaussDB(for Redis) 强一致 PB级数据库

避免人工智能存在“歧视”,要从这8大方法入手

澳鹏Appen

人工智能 机器学习 大数据 人脸识别

CloudQuery v1.3.6发布,更加完善的数据操作支持

BinTools图尔兹

数据库 sql 数据安全 数据管理工具

智慧城市:大数据运营中心 IOC —— Web GIS 地图应用

一只数据鲸鱼

WebGIS ioc 数据可视化 智慧城市 数据运营

KubeVela 1.0 :开启可编程式应用平台的未来

阿里巴巴云原生

容器 云原生 k8s 消息中间件 Go 语言

基于深度神经网络的噪声标签学习

华为云开发者联盟

神经网络 损失函数 深度神经网络 噪声 噪音数据

云原生势不可挡,华为云GaussDB加速企业数字化转型

华为云开发者联盟

华为云 GaussDB

1小时破千万点击量!阿里巴巴首发:Java核心框架指导手册

Java架构追梦

Java 阿里巴巴 架构 面试 核心框架

阿里巴巴云原生 etcd 服务集群管控优化实践

阿里巴巴云原生

容器 运维 云原生 k8s 存储

Julien Le Dem对使用Apache Arrow进行面向列的数据处理的未来的看法_大数据_Alexandre Rodrigues_InfoQ精选文章