写点什么

使用 TensorFlow 的递归神经网络(LSTM)进行序列预测

  • 2016-07-06
  • 本文字数:4120 字

    阅读完需:约 14 分钟

本篇文章介绍使用 TensorFlow 的递归神经网络(LSTM)进行序列预测。作者在网上找到的使用 LSTM 模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的。

所以呢,这里是基于历史观察数据进行实数序列的预测。传统的神经网络模型并不能解决这种问题,进而开发出递归神经网络模型,递归神经网络模型可以存储历史数据来预测未来的事情。

在这个例子里将预测几个函数:

  • 正弦函数:sin

  • 同时存在正弦函数和余弦函数:sin 和 cos

  • x*sin(x)

首先,建立 LSTM 模型,lstm_model,这个模型有一系列的不同时间步的 lstm 单元(cell),紧跟其后的是稠密层。

复制代码
def lstm_model(time_steps, rnn_layers, dense_layers=None):
def lstm_cells(layers):
if isinstance(layers[0], dict):
return [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(layer['steps']), layer['keep_prob'])
if layer.get('keep_prob') else tf.nn.rnn_cell.BasicLSTMCell(layer['steps'])
for layer in layers]
return [tf.nn.rnn_cell.BasicLSTMCell(steps) for steps in layers]
def dnn_layers(input_layers, layers):
if layers and isinstance(layers, dict):
return skflow.ops.dnn(input_layers,
layers['layers'],
activation=layers.get('activation'),
dropout=layers.get('dropout'))
elif layers:
return skflow.ops.dnn(input_layers, layers)
else:
return input_layers
def _lstm_model(X, y):
stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cells(rnn_layers))
x_ = skflow.ops.split_squeeze(1, time_steps, X)
output, layers = tf.nn.rnn(stacked_lstm, x_, dtype=dtypes.float32)
output = dnn_layers(output[-1], dense_layers)
return skflow.models.linear_regression(output, y)
return _lstm_model

所建立的模型期望输入数据的维度与(batch size,第一个 lstm cell 的时间步长 time_step,特征数量 num_features)相关。
接下来我们按模型所能接受的数据方式来准备数据。

复制代码
def rnn_data(data, time_steps, labels=False):
"""
creates new data frame based on previous observation
* example:
l = [1, 2, 3, 4, 5]
time_steps = 2
-> labels == False [[1, 2], [2, 3], [3, 4]]
-> labels == True [2, 3, 4, 5]
"""
rnn_df = []
for i in range(len(data) - time_steps):
if labels:
try:
rnn_df.append(data.iloc[i + time_steps].as_matrix())
except AttributeError:
rnn_df.append(data.iloc[i + time_steps])
else:
data_ = data.iloc[i: i + time_steps].as_matrix()
rnn_df.append(data_ if len(data_.shape) > 1 else [[i] for i in data_])
return np.array(rnn_df)
def split_data(data, val_size=0.1, test_size=0.1):
"""
splits data to training, validation and testing parts
"""
ntest = int(round(len(data) * (1 - test_size)))
nval = int(round(len(data.iloc[:ntest]) * (1 - val_size)))
df_train, df_val, df_test = data.iloc[:nval], data.iloc[nval:ntest], data.iloc[ntest:]
return df_train, df_val, df_test
def prepare_data(data, time_steps, labels=False, val_size=0.1, test_size=0.1):
"""
Given the number of `time_steps` and some data.
prepares training, validation and test data for an lstm cell.
"""
df_train, df_val, df_test = split_data(data, val_size, test_size)
return (rnn_data(df_train, time_steps, labels=labels),
rnn_data(df_val, time_steps, labels=labels),
rnn_data(df_test, time_steps, labels=labels))
def generate_data(fct, x, time_steps, seperate=False):
"""generate data with based on a function fct"""
data = fct(x)
if not isinstance(data, pd.DataFrame):
data = pd.DataFrame(data)
train_x, val_x, test_x = prepare_data(data['a'] if seperate else data, time_steps)
train_y, val_y, test_y = prepare_data(data['b'] if seperate else data, time_steps, labels=True)
return dict(train=train_x, val=val_x, test=test_x), dict(train=train_y, val=val_y, test=test

这将会创建一个数据让模型可以查找过去 time_steps 步来预测数据。比如,LSTM 模型的第一个 cell 是 10 time_steps cell,为了做预测我们需要输入 10 个历史数据点。y 值跟我们想预测的第十个值相关。
现在创建一个基于 LSTM 模型的回归量。

复制代码
regressor = skflow.TensorFlowEstimator(model_fn=lstm_model(TIMESTEPS, RNN_LAYERS, DENSE_LAYERS),
n_classes=0,
verbose=1,
steps=TRAINING_STEPS,
optimizer='Adagrad',
learning_rate=0.03,
batch_size=BATCH_SIZE)

预测 sin 函数

复制代码
X, y = generate_data(np.sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #9700, epoch #119, avg. train loss: 0.00082, avg. val loss: 0.00084
# Step #9800, epoch #120, avg. train loss: 0.00083, avg. val loss: 0.00082
# Step #9900, epoch #122, avg. train loss: 0.00082, avg. val loss: 0.00082
# Step #10000, epoch #123, avg. train loss: 0.00081, avg. val loss: 0.00081

预测测试数据

复制代码
mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 0.000776

真实 sin 函数

预测 sin 函数

预测 sin 和 cos 混合函数

复制代码
def sin_cos(x):
return pd.DataFrame(dict(a=np.sin(x), b=np.cos(x)), index=x)
X, y = generate_data(sin_cos, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #9500, epoch #117, avg. train loss: 0.00120, avg. val loss: 0.00118
# Step #9600, epoch #118, avg. train loss: 0.00121, avg. val loss: 0.00118
# Step #9700, epoch #119, avg. train loss: 0.00118, avg. val loss: 0.00118
# Step #9800, epoch #120, avg. train loss: 0.00118, avg. val loss: 0.00116
# Step #9900, epoch #122, avg. train loss: 0.00118, avg. val loss: 0.00115
# Step #10000, epoch #123, avg. train loss: 0.00117, avg. val loss: 0.00115

预测测试数据

复制代码
mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 0.001144

真实的 sin_cos 函数

预测的 sin_cos 函数

预测 x*sin 函数 ```

def x_sin(x):
return x * np.sin(x)
X, y = generate_data(x_sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)

create a lstm instance and validation monitor

validation_monitor = skflow.monitors.ValidationMonitor(X[‘val’], y[‘val’], n_classes=0,
print_steps=PRINT_STEPS,
early_stopping_rounds=1000,
logdir=LOG_DIR)
regressor.fit(X[‘train’], y[‘train’], validation_monitor, logdir=LOG_DIR)

> last training steps

Step #32500, epoch #401, avg. train loss: 0.48248, avg. val loss: 15.98678

Step #33800, epoch #417, avg. train loss: 0.47391, avg. val loss: 15.92590

Step #35100, epoch #433, avg. train loss: 0.45570, avg. val loss: 15.77346

Step #36400, epoch #449, avg. train loss: 0.45853, avg. val loss: 15.61680

Step #37700, epoch #465, avg. train loss: 0.44212, avg. val loss: 15.48604

Step #39000, epoch #481, avg. train loss: 0.43224, avg. val loss: 15.43947

复制代码
预测测试数据

mse = mean_squared_error(regressor.predict(X[‘test’]), y[‘test’])
print (“Error: {}”.format(mse))

61.024454351

复制代码
真实的 x\*sin 函数
![](https://static001.infoq.cn/resource/image/15/c0/15117ac90c23755ac54f86d2ae723fc0.png)
预测的 x\*sin 函数
![](https://static001.infoq.cn/resource/image/a2/58/a213b516943f882848665cdf35aea858.png)
译者信息:侠天,专注于大数据、机器学习和数学相关的内容,并有个人公众号:bigdata\_ny 分享相关技术文章。
英文原文:[Sequence prediction using recurrent neural networks(LSTM) with TensorFlow](http://mourafiq.com/2016/05/15/predicting-sequences-using-rnn-in-tensorflow.html)
2016-07-06 19:0023861
用户头像

发布了 43 篇内容, 共 29.2 次阅读, 收获喜欢 7 次。

关注

评论

发布
暂无评论
发现更多内容

原创 | DDD与分层

编程道与术

Java 类

michaelliu

Java

Iceberg 在基于 Flink 的流式数据入库场景中的应用

Apache Flink

大数据 flink 流计算 实时计算

vue项目中遇到的依赖及其他问题

靖仙

Vue 大前端 Web

PyFlink 社区扶持计划正式上线!

Apache Flink

大数据 flink 流计算 实时计算

最佳实践 | Flink Forward 全球会议抢先看!

Apache Flink

大数据 flink AI 流计算 实时计算

LeetCode 120. Triangle

隔壁小王

算法 LeetCode

技术人员能力养成手记

MavenTalker

个人成长 程序人生 职业规划

Java 代码的组织机制

michaelliu

Java

工厂模式

Wen Wei

设计模式

原创 | OOAD范例:配置类设计

编程道与术

什么是全光架构?光纤KVM和分布式IP KVM系统知多少?

DT极客

初文,大浪淘沙

傅丞 Tony

作为程序员,有哪些写作平台值得推荐 ?B站也算吧

邓瑞恒Ryan

学习 创业 写作 知识管理 自我提升

在InfoQ开启写作之旅

张先亮-Hank

人工智能 随笔

Java 类构造函数的调用顺序

michaelliu

Java

经验可能反而阻碍你的新认知

孙苏勇

思考 读书

Flink State 最佳实践

Apache Flink

大数据 flink AI 流计算 实时计算

Flink SQL 的 9 个示例

Apache Flink

大数据 flink 流计算 实时计算

我入驻InfoQ平台啦

BlueblueWings

Flink 的经典场景和业务故事有哪些?看看他们就知道了

Apache Flink

大数据 flink 流计算 实时计算

docker搭建lamp

刘磐石(刘坤鹏)

你的文章中为什么会有加粗的文字

小天同学

思考 写作 感悟

关于PHP内存溢出的思考

L

php

祝贺!两位 Apache Flink PMC 喜提 Apache Member

Apache Flink

大数据 flink 流计算 实时计算

Flink 消息聚合处理方案

Apache Flink

大数据 flink 流计算 实时计算

18个PPT,29个提问解答,都在这儿啦!

Apache Flink

大数据 flink 流计算 实时计算

聊聊技术人如何与甲方客户打交道

MavenTalker

程序员 程序人生 职业规划

哈希,茫茫人海,我一眼看到了你

dongge

转任管理岗位后,还要不要从事编码工作?

MavenTalker

团队管理 程序员 个人成长 职业规划

屏幕适配插件:ScreenMatch基本使用和注意事项

Arch

使用TensorFlow的递归神经网络(LSTM)进行序列预测_语言 & 开发_Mourad_InfoQ精选文章