写点什么

从 Docker 运维看知乎容器平台的优雅整合

  • 2016-07-26
  • 本文字数:4051 字

    阅读完需:约 13 分钟

传统的部署是安装、配置和运行;而 Docker 的出现革命性地改变了传统模式,部署被简化为复制和运行两个步骤。因此,越来越多企业使用 Docker 提高分布式应用的构建与交付;但是与此同时,Docker 带来了很多不可避免的挑战,其中运维需要克服的挑战尤为突出。知乎曾经在 QCon 上与大家首次分享 Docker 架构和经验,也即将在 CNUTCon 全球容器技术大会详细讲述容器平台的实战历程。本次 InfoQ 就在 Docker 整合入原有架构过程中,如何实现的 Docker 运维对知乎两位专家进行了采访。

受访嘉宾介绍

林晓峰:知乎技术平台团队负责人。负责建设知乎各类基础设施平台、抽象各个基础设施的服务,以及为业务开发提供统一的基础设施平台接入。高性能 Linux 网络协议栈实现 Fastsocket 协议作者。

张阜兴:知乎平台架构工程师。负责知乎内部弹性计算平台,以及知乎容器平台搭建实施和各业务容器化进程。在高性能网络流量处理和分布式存储系统方面有过多年实践经验,目前致力于构建统一资源调度框架,分布式系统设计等方向。

InfoQ:可以简要介绍下知乎现在的 Docker 研发及使用情况吗?

林晓峰:知乎平台架构团队,采取研发和运维一体的 DevOps 模式;其中容器平台项目组目前的人数是 2.5 人。知乎几乎全部业务和服务(100+)都运行在容器平台(Bay)上,服务器资源申请已经对业务部门关闭。在业务峰值时段,平台整体容器数量会动态扩容到接近万个。

InfoQ:是在怎样的情况下,知乎选择了 Docker?它是否帮你们实现了所有的预期目标呢?为什么知乎认为使用容器方案是“重要决策”?

林晓峰:随着知乎业务的增长和微服务化的演进,越来越迫切的需要解决三个问题:

1. 环境隔离:在物理机时代,由于每个业务依赖的系统环境不同,服务器之间无法通用,服务器负载也各不相同;各个业务都需要独立管理服务器容量,处理服务器故障,对业务开发造成较大负担。
2. 精细资源隔离: 服务隔离要求按照服务接口对进程物理隔离,防止因为某一个接口而影响整体服务的问题,同时也需要根据不同接口的特性,设置不同的进程数、CPU 和内存配置,实现更加精细的资源管理。
3. 资源动态调整: 业务需要快速自动适应流量负载的变化。在负载高峰期快速增加资源,保证业务服务质量;在负载低峰期释放资源给其它服务,提高集群资源利用率。

上述问题抽象出来,其实需要一套高效的资源管理和调度系统

容器技术可以帮助我们实现应用环境的封装隔离以及 CPU、内存等资源限制;结合集群管理方案,能够实现资源的统一调度和动态调整:由此解决上述三个问题。从而实现业务开发人员可以专注开发业务逻辑,而资源调度和管理、负载监控、服务器故障等处理统一交于平台自动处理或者在必要时人工干预。

知乎容器平台(Bay)建设和实践到现在,从最初“邀请”业务迁移到容器平台,到现在业务要求使用容器平台,间接证明容器平台实现了预期目标。总体来说,容器平台有力的支撑了知乎的微服务化和迅速增大的业务规模,已经成为知乎基础架构的重量级组成。

InfoQ:能否介绍下知乎在搭建 Docker 平台架构时,是怎样考虑 Docker 运维模块的?

林晓峰:在搭建 Docker 平台时,我们的一个主要理念是 DevOps,通过这种模式来解决各个层面的运维效率问题。

  1. 对业务用户层面,容器平台明确业务开发能够完成的工作都由业务开发人员来操作,如日常的服务发布、配置变更。通过这种方式,既充分满足业务开发人员操作的便捷性,同时也减轻平台维护人员的日常工作量。
  2. 对平台内部层面,也是通过开发的思路来解决运维问题,即日常的处理尽量自动化完成。 以下面三类情况举例说明:
  • 容器集群扩容:在新服务器安装系统时,会运行 Salt 配置、安装并运行 Docker 相关后台进程和 Mesos-Slave 节点,这样机器就自动加入到了容器集群。
  • 服务运行的容器数量:可以通过预定义的指标实现自动的伸缩,业务流量增长和正常的流量波动无须人工调整资源。
  • 个别容器或者服务器故障:我们认为它是一种日常的、节点级别的“正常现象”,对其进行自动处理,而不是作为异常情况报警等待人工干预。相对的,容器组和集群整体的健康情况才是平台维护人员的关注对象,具体细节可以参考 QCon 北京 2016 知乎关于容器云平台分享的 Slides 和视频。

InfoQ:Docker 的使用都给知乎运维带来了哪些挑战?可否介绍下针对这些挑战,知乎采取了怎样的措施?

张阜兴:总结而言有三大挑战:

  • 容器平台的工作负担加重
  • 系统的整体复杂性增加
  • 某些异常情况出现

首先,原本由业务本身负责的系统运维工作转交给了容器平台(如业务资源变更,物理机异常处理等),加重了容器平台的工作负担。对此知乎的解决方案是:一方面通过设计集群的容错机制,自动处理物理机故障,避免人工响应;另一方面,总结业务通用的需求,例如业务容量的动态调整,开发新的平台功能来满足。

其次,Docker 集群方案引入了一些其他系统组件,如 Consul,HAProxy,Cadvisor,Graphite 等,增加了系统的整体复杂性。同时 Docker 本身还在快速发展,存在各种不稳定因素,相比于成熟的物理机运行环境需要处理的异常更多。为了解决此问题,知乎采用的措施是:针对容器平台的特点,合理使用这些系统组件,简化调用方式,例如在使用 Consul 做服务发现时,使用了 Consul 的 kv 功能来实现实例的批量注册和反注册对于 Docker 自身的问题,一方面借助社区力量修复 BUG,另一方面通过开发一些工具来处理。例如 Docker 网络方案在使用 Iptables 时会存在配置清理失败的情况,我们分析原因后,定制了 Iptables 系统包,避免了这种情况。

最后,随着容器平台集群规模的增大,某些异常情况出现的概率大大增加,某些组件的性能瓶颈逐渐暴露。对此,知乎的解决方案包含三个部分:一是在设计阶段尽量避免性能单点,如 Docker Registry 默认为单机版,我们改用 HDFS 作为其存储后端,实现了 Registry 的分布式水平扩展。二是在预估的集群规模下进行充分的压力测试,例如验证单机能够容纳的容器数以及启动速度;三是监控集群性能,在接近性能瓶颈时及早报警发现。

InfoQ:现有 Docker 几个监控开源方案,比如 Prometheus、Sysdig、cAdvisor,你们有研究或使用过吗?如果有,可否评论下这些开源方案?

张阜兴:在使用容器前,知乎已经有了一套比较完善的监控系统,采用的是 Statsd(采集)+ Graphite(存储)+ Grafana(图表展示)+ Halo(自研报警系统)。这套系统已经能较好的满足知乎业务运维需求,因此容器平台监控主要是采集指标与这些已有的系统进行整合

对于这三个监控开源方案:

  • Prometheus 的指标存储,展示,报警等功能与知乎已有系统重合,整体替换风险较大,所以未做考虑。
  • Sysdig 是一个将各种调试工具集成在一起快速诊断应用行为的方案,但是不适合做常规指标监控使用。
  • 我们采用了 cAdvisor 作为容器指标收集工具,并根据业务需求对 cAdvisor 进行了定制开发,实现了容器指标与已有监控系统的整合。

InfoQ:知乎是如何实现的 Docker 及 Docker 集群的监控呢?

张阜兴:我们使用 cAdvisor 收集容器指标,存入 Graphite,前端使用 Grafana 展示,通过自研报警系统 Halo 发送报警。

具体监控指标分为如下几类:

  1. 业务容器实例监控:容器的 CPU、内存、网络、磁盘;
  2. 业务容器组监控:容器组内容器重启次数,容器组内健康容器比例等指标;
  3. 平台层面监控:Mesos 集群指标,Docker 进程及附属组件状态等监控;
  4. 服务器层面监控:服务器的 CPU、内存、硬盘、网络等指标。

监控的意义在于及早发现问题,要避免和减少监控对服务的影响。作为一个 DevOps 式的平台,应该将合适的监控报警发送至合适的人员,比如业务层面的指标会通知业务开发人员处理;而平台和服务器层面的报警发给平台维护人员,同时还应该设置合适的报警阈值,避免无效报警带来的干扰。

InfoQ:能否说明当一个 Docker 容器服务发生故障时,平台的处理流程?

张阜兴:对于在线调用的 RPC 服务,一个容器发生故障时,服务反向代理 HAPrxoy 会通过健康检查发现该容器故障,并将流量转发到其它容器;同时 Mesos 探测到容器故障后会在服务发现上解注册该容器,并在集群中重新启动该容器:整个过程都是自动完成的。

InfoQ:自动扩容的流程又是怎样的呢?

张阜兴:用户开启了自动扩容功能后,监管进程会定时采集应用容器指标,如 CPU 利用率,根据一定算法设置合适容器数目,进而完成自动扩容或者缩容。在实际应用中,为了避免定时间隔的滞后效应和负载的震荡,一方面我们会控制定时间隔,另一方面我们采用了“快增慢减”的策略,在负载升高时快速的增加容器,在负载降低时缓慢的减少容器。

InfoQ:对于 Docker 日志处理,你们采用的是什么技术栈呢?

张阜兴:Docker 日志处理分为两部分:

  1. 业务日志由进程直接写入 Kafka,其他组件通过订阅 Kafka 实现更丰富的日志处理。例如,使用 Flume 订阅 Kafka,并将日志写入 HDFS 和 ElasticSearch。
  2. 容器的标准输入输出则通过 json 文件写到本地磁盘,从而在进程异常时候,能够通过 Mesos 提供的 url 获取故障信息。Mesos 可以定时帮助我们清除过期容器日志,不用担心磁盘空间占用的问题。

InfoQ:在整个 Docker 平台的实践中,两位有什么感触最深的经验或者建议可以分享给其他的 Docker 使用者们?

林晓峰:Docker 作为一种容器技术,为企业提高产品研发效率和改善基础设施提供了新的思路和方向,应该是作为一个组件融入到企业整体的研发体系中,而不是“革现有研发体系的命”;引入 Docker 让某个解决方案变得优雅,而不是为了 Docker 而 Docker。实践 Docker,应该在充分理解业务需求和现有基础设施后,找到适合自己的 Docker 的使用姿势,这样才能真正让 Docker 技术在企业内落地,并服务于业务,实现 Docker 的价值。

张阜兴:在平台搭建过程中,由于 Docker 本身还在快速发展,不可避免的会存在一些不稳定因素,需要通过上层的容错机制来降低影响

InfoQ:非常谢谢两位接受采访,同时很期待张阜兴在全球容器大会即将带来的分享!


感谢徐川对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2016-07-26 23:059748
用户头像

发布了 58 篇内容, 共 43.9 次阅读, 收获喜欢 35 次。

关注

评论

发布
暂无评论
发现更多内容

每个端侧产品都需要的用户体验监控

阿里巴巴云原生

阿里云 云原生

「邀您参会」9月20日 中国可观测日成都站

观测云

可观测性

低代码赋能:JNPF打造企业数智化转型的高效路径

EquatorCoco

低代码 数智化

浅谈DevOps在inBuilder低代码中的应用

inBuilder低代码平台

DevOps 低代码平台

浅谈 Occupancy

地平线开发者

自动驾驶 算法

一本书加印19次,回答小伙伴们几个写书的疑问

江南一点雨

Python实现动图生成:轻松创建自定义表情包

幂简集成

API

聚焦新能源未来,望繁信科技邀您共赴CNDS 2024中国新能源产业数智峰会

望繁信科技

数字化转型 流程挖掘 流程智能 望繁信科技 新能源产业

活动回顾|矩阵起源亮相第15届中国数据库技术大会DTCC

MatrixOrigin

我的 Linux 利器

玄兴梦影

Linux

深智城基于超融合数据库MatrixOne的一站式交通大数据平台改造

MatrixOrigin

数据库 深圳

Docker启动容器报错:cannot allocate memory: unknown

百度搜索:蓝易云

BEVFormer 开源算法逐行解析(二):Decoder 和 Det 部分

地平线开发者

自动驾驶 算法

依托自研力量,给共享集群存储服务一个优选

YashanDB

高可用 yashandb 共享集群 崖山数据库

天工开物 | 征程6启航新章:仿真篇

地平线开发者

自动驾驶 算法 仿真

CAMA | 以视觉为中心的静态地图元素标注方法

地平线开发者

自动驾驶 算法

Next.js的一次cookies处理过程

麦兜

站在 AI、DePIN 蓝海赛道交汇处,MelosBoom 如何带用户捕获市场红利

股市老人

创业者必看!游戏直播平台开发策略,助你在饱和市场脱颖而出

软件开发-梦幻运营部

企业转型新引擎:JNPF低代码平台的数智化解决方案

不在线第一只蜗牛

低代码 数字化

Serverless 应用引擎 SAE 助力袋拉拉研发提效 70%

阿里巴巴云原生

阿里云 Serverless 云原生

第66期 | GPTSecurity周报

云起无垠

XIAOJUSURVEY vs Google Forms(一)

XIAOJUSURVEY

表单 问卷 竞品分析 调研系统 googleform

直面女性心理健康现状,数业智能心大陆助你应对情绪困扰

心大陆多智能体

智能体 AI大模型 心理健康 数字心理

面试官:说说Lambda表达式底层原理?

王磊

IntelliJ IDEA激活教程,2024年永久破解方法

大师兄

IDEA idea激活码 idea破解教程

一文教会你如何用好通义灵码,让这款 AI 编码工具帮你做更多工作,更高效

阿里巴巴云原生

阿里云 云原生 通义灵码

一文教会你如何用好通义灵码,让这款 AI 编码工具帮你做更多工作,更高效

阿里云云效

阿里云 云原生 通义灵码

数智化浪潮下,看JNPF低代码平台如何助力企业成功转型

快乐非自愿限量之名

低代码 数智化 JNPF

从Docker运维看知乎容器平台的优雅整合_语言 & 开发_木环_InfoQ精选文章