写点什么

从 CockroachDB 看事务型数据库开发

  • 2016-04-14
  • 本文字数:2062 字

    阅读完需:约 7 分钟

CockroachDB 继 2015 年 5 月融到第一笔 $6.25M 的 A 轮之后,今年 3 月底又融到 $20M。对事务型数据库的开发者们,这是个好消息。

有哪些东西值得思考呢?

首先 CockroachDB 也是个很棒的团队,位于纽约,去年 A 轮时只有 6 个人,到现在也就 20 来号人。小而精;和在大数据里站山头创业里大多数妖魔鬼怪一样,创始人有三个工程师,包括 CEO Kimball,都来自大数据老巢 -Google;第一位投资者:Benchmark 的 Peter Fenton。Benchmark 投资过大名鼎鼎的 Hortonworks 和 New Relic。 自然而然地,A1 轮 Google Venture,Hortonworks CEO Rob Bearden 和 Cloudera 创始人 Jeff Hammerbacher 也进来了。所以,找对投资人很重要,根正苗红的大数据投资者,带来的不仅是 $$。

这种数据库一开始就是为互联网定制的–线性扩展、确保事务完整性,全局的数据一致、和极端情况下的生存能力,即使内存、磁盘、节点、集群甚至是数据中心崩溃。而最对口的客户之一,无疑是服务于世界 500 强的 SAAS 公司—5 分钟的事务型服务中断,可能影响到重要的 ERP、CRM 等核心业务系统,而对于 SAAS 服务提供商而言,那就是自砸招牌。因此,强哥很聪明地选了 SAAS 作为重点用户场景之一,而不仅靠互联网公司。

开始的时候,他们几个纯粹是按开发者的路子,本来打算 2015 年夏天推出的 Beta 版,目标是 Transactional Key-Value Store.,所以最后还是决定把 SQL 加上去,这大概增加了 2 个季度的开发时间。不过,这样的定位更清晰,不会半生不熟地做了个 NoSQL, 让用户自己琢磨到底是自己做索引,还是等等看。等等,索引自己做? 别忘了他们是从 Google 来的,Spanner 和 Web Index 可是 CockroachDB 的童子功啊。加上 SQL 对于用户来讲更加方便。

他们放弃的东西,也值得大家思考:他们放弃了 Join,放弃了并行执行分布式查询。有意思吧? 实际上是放弃掉“关系型”。在浓浓的 Redis 里,加了 SQL 这个大料,就成了 Fusion food 了。6 个人,两个月完成,真不错。

互联网公司对一致性的要求并不高,数据模型这种东西基本上不放在眼里,也确实用不上。Redis 当年连 Int 的类型都没有,只有 string,哪管你营收、销售、现金流报表是否对得上? 这也让他们获得了很多东西,比如响应时间和并发。Twitter 当年开始的那种场景,就算用自己用 Hash Table 建索引,也没啥不可能的,一张表满了,就写下一张。MySQL 拿来当 Raid 0 用,复制到 20 台节点上就行,Partition 信息交给根节点,用 Ruby On Rails 写个搜索,搜个三天的内容也挺好。

对今后的发展而言,要和大量的 NoSQL 竞争对手区别开,跨数据中心的数据一致性是个很棒的卖点,随着 FinTech 的蓬勃发展,连花旗、大摩、德银、Visa 的舵手都加盟互联网金融,CockRoachDB 也把这个作为路线图里的重点项目。

随着 Lucene 的发展,和 Java Future 把大家从以 Service 为节点的 DAG 拓扑带到以 Future 为节点的同、异步统一的网络编程等等,助力了 Twitter 从 2010 年开始开发的的 real-time indexing,2010 年开始给大家带来很多想象空间,原来可以自己根据内外不同的数据来源(不仅是用户帖子,而且用户资料,排名,第三方数据、地址等等)加好多东西到索引里。

也为了方便互联网公司业务的发展—哪家的表结构能保证不变啊? 通过多版本和分阶段授权等方式,Cockroach 在 Beta 版本里加了一个 Online Schema Change System,在服务不中断和不锁表的情况下,增加列,修改 Index。你想想,像 Stack overflow 那样的公司,一个五六千万行的表,做 Alter table 操作,起码要五六个小时吧?如果用 Amazon RDS 服务,能否在 Slave 上做好再 Promote 到主服务器上,还另说。

这功能也挺有意思:改变表结构 schema 不是一蹴而就的事,毕竟有那么多节点,都有各自的 cache 和 TTL。要保证所有节点最终都用到正确的 schema 版本,需要一定“收敛时间”。像 PrestaDB、Trafodion 这一类成熟的数据库引擎一样,它也用了广播和租约相结合的方式。 在 DML 之后,节点会收到一个“读”的租约,在分钟级别的租约内可以用这个 schema,而一旦出现 Alter Table,将广播给集群里所有节点,让他们放弃当前租约,准备用新的,这样来达到更快的收敛时间。

他们下一步开发还是会去支持 JOIN 和并行 Query 执行。这是个很大挑战。像 Apache Trafodion 这种引擎当年能在 Nonstop 大型数据库上用,支持银行电信高并发的 OLTP,其核心竞争力之一就在于并行处理,大致的做法包括多个机制上的并行,比如并行处理 Partition 或更小粒度的 Division、执行器里一个个 SQL operator 连起来的管道并行和 SQL Operator 本身的同步 / 异步计算并行。 但是,这里面的难度很大,比如,为了确定到底用几个 worker 线程参与并行,需要考虑 Key 的数据分散情况,相关 Query 可能涉及到的行数范围,在架构各层插入统计信息的柄,如何下推,周到的 Update Statistics 之类以便优化,进行检测执行树每层的数据倾斜情况等等。

作者介绍:杨旸,就职于上海易鲸捷,兴趣在于分布式事务、SQL 优化、Hadoop 开源生态圈。 yang.yang@esgyn.cn

2016-04-14 21:003852

评论

发布
暂无评论
发现更多内容

裸眼3D技术引领新潮流

Dylan

技术 媒体 数字 3D 户外LED显示屏

Python爬虫实战:批量下载高清小姐姐壁纸(附上完整源码)

袁袁袁袁满

Python 代理IP 爬虫实战

软件测试丨精准测试如何落地

测试人

软件测试

构建司库信创体系化能力,信息技术驱动势不可挡!

用友智能财务

数字化转型 科技 财务 企业数智化 司库

淘宝商品详情API接口:实现商品属性与价格数据的实时更新策略

代码忍者

API 接口 pinduoduo API

电商的强劲马达:京东商品详情API接口

科普小能手

京东 API API 接口 京东商品详情接口 京东商品API

苹果电脑怎么解压rar文件?Mac上解压RAR文件超实用的方法

阿拉灯神丁

压缩工具 mac解压缩软件 文件压缩工具 BetterZip 5下载

鸿蒙网络编程系列48-仓颉版UDP回声服务器示例

长弓三石

DevEco Studio 开发实例 HarmonyOS NEXT 网络与连接

Go语言中使用JWT鉴权、Token刷新完整示例,拿去直接用!

左诗右码

商品管理系统引领时尚零售智能化升级 降价商品量锐减30%

第七在线

Reviewbot 开源 | 有些 git commit 记录真的不敢恭维, 我推荐每位工程师都常用 git rebase 和 git commit --amend

大卡尔

DevOps 代码审查 工程实践 CodeReview

openEuler 走出开源操作系统的“开放创新路”

科技热闻

蚂蚁 KAG 框架核心功能研读

可信AI进展

安徽黄山市等保测评机构有哪些?电话多少?

行云管家

网络安全 等保 堡垒机 黄山

交通行业怎么定义?需要用到堡垒机?

行云管家

交通 IT行业 IT运维 交通运维

用户身份与访问管理(IAM)的隐私保护与合规

芯盾时代

数据安全 iam 隐私合规

【FAQ】HarmonyOS SDK 闭源开放能力 —Share Kit

HarmonyOS SDK

HarmonyOS

「一」HarmonyOS端云一体化开发概述

白晓明

HarmonyOS HarmonyOS NEXT 端云一体化

深度解读混合专家模型(MoE):算法、演变与原理

Zilliz

nlp 大模型 深度学习‘’ MoE

时序图是什么意思,怎么画?10个常用的时序图模板盘点!

职场工具箱

效率工具 UML 时序图 在线白板 绘图软件

鸿蒙网络编程系列49-仓颉版TCP客户端

长弓三石

DevEco Studio 开发实例 HarmonyOS NEXT 网络与连接

精准测试如何落地

测吧(北京)科技有限公司

测试

又稳又快!基于ByteHouse ELT构建高性能离/在线一体化数仓

字节跳动数据平台

大数据 数据飞轮

金融数据处理新策略:ScaleFlux CSD的优化之道

ScaleFlux

量化交易 固态硬盘 企业存储

从CockroachDB 看事务型数据库开发_数据库_杨旸_InfoQ精选文章