报名参加CloudWeGo黑客松,奖金直推双丰收! 了解详情
写点什么

Airbnb 使用净推荐值 (NPS) 预测用户再次预定率

  • 2016-03-02
  • 本文字数:1563 字

    阅读完需:约 5 分钟

净推荐值(Net Promoter Score, NPS)是一个度量用户忠诚度的指标,用于计量用户再次访问公司网站或使用公司服务的可能性。 Fred Reicheld 在 2003 年首次提出这一概念。NPS 的计算基于用户对问题“推荐可能性”(LTR)——向朋友推荐公司产品、服务、活动的可能性有多大——的反馈。用户根据愿意推荐的程度在 0 到 10 之间进行打分,基于打分结果可以计算 NPS 值。

打分为 9 或 10 分的用户称为“推荐者”,这些用户愿意押上他们的名声向朋友推荐。打分在 0 到 6 之间的用户称为“批评者”,这些用户对公司不满意,可能会告诉他们的朋友或同事不值得在公司的产品或服务上浪费时间。打分为 7 或 8 分的用户被认为是“被动的”,他们喜欢公司的产品或服务,但不会向朋友推荐。

NPS 值等于推荐者所占的百分比减去批评者所占的百分比:

NPS = (推荐者数 / 总样本数)*100% - (批评者数 / 总样本数)*100%
* 推荐者数 = 打分为 9 或 10 分的用户数
* 批评者数 = 打分在 0 到 6 分之间的用户数

NPS 值的范围从 -100(所有被调查用户都是批评者)到 100(所有被调查用户都是推荐者)。

Airbnb 公司的产品为用户提供了列举、探索和预订全球范围内独一无二住处的社区市场。Airbnb 公司将 NPS 值全面地用于度量用户忠诚度。他们相信这是一种更为有效的评估用户再次预订或向朋友推荐的可能性的指标。

Airbnb 工程师团队的 Lisa Qian 最近在他们的技术博客里描述了他们如何使用数据来评估旅行的质量。他们发现更高的NPS 值一般与更高的推荐率和再次预订率相对应。

该团队也使用其它用户评价指标来预测再次预订率,如准确性(Accuracy)、整洁度(Cleanliness)、入住(Checkin)、沟通(Communication)、地点(Location) 和价值(Value) 等。通过比较一系列嵌套的Logistic 回归模型,他们可以评估用户评价等级对用户在本次旅行结束后12 个月内是否会再次使用Airbnb 的预测能力.

这里有一些有趣的预测用户再次预订情况的统计。仅仅使用用户旅行结束后的LTR 反馈,Airbnb 团队能准确预测用户在未来12 个月再次预订情况的概率是56%。加入用户、户主及旅行的基本信息后,预测准确率提升到63.5%。再加入用户评价指标(不包含LTR),预测准确率提升了0.1%。

我们在 InfoQ QCon 会议都采用了 NPS 值来评估我们的读者访问网站或参加会议的可能性。编辑部负责人 Charles Humble 告诉我:

最初是我们的 CEO 兼联合创始人 Floyd Marinescu 倡导使用 NPS,并很快被 QCon 巴西团队采用。从那之后我们逐渐在各项产品中使用 NPS。

对于 QCon,我们在会议结束后分发给参会者的调查问卷里加入了 NPS 问题。最近,我们还使用第三方工具 Qeryz 询问第一次使用 InfoQ 的读者 NPS 问题。我们相当满意我们得到的 NPS 值——42%,而得分最高的英国 QCon 是 53%。我们认为现在的得分很不错,但在公司内部有很大的主动性要提升 NPS 值。

NPS 值只是我们使用的若干度量值中的一个,但它确实有帮助。如果 NPS 值下降,这是一个很有效的预警信号,表示我们需要进行调查并尝试解决问题了。它也可以很好地帮助我们比较不同产品、不同地区的效果。

有一些对NPS 的批评认为,相比于其它与用户忠诚度相关的调查问题,NPS 并没有提供更多的信息。此外,没有研究证据表明“推荐可能性”问题与其它用户忠诚度调查问题相比,可以更好地预测商业增长情况。另一些批评认为NPS 使用了低预测有效性的数值范围,不如综合维度的问题准确,并且NPS 不能预测忠诚行为。

查看英文原文: How Airbnb Uses Net Promoter Score to Predict Guest Rebooking


感谢张龙对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2016-03-02 18:003688

评论

发布
暂无评论
发现更多内容

cdc任务同步错误但不会触发告警问题记录

TiDB 社区干货传送门

故障排查/诊断

TiDB 7.1资源管控和Oceanbase 4.0多租户使用对比

TiDB 社区干货传送门

新版本/特性解读 7.x 实践

问答对话文本数据,构建智能问答对话系统的基础

数据堂

基于CC2530设计智慧农业控制系统

DS小龙哥

6 月 优质更文活动

跨AZ部署最佳实践之Kafka

焦振清

【领域驱动设计专题】一文带领你透视DDD领域驱动模型的本质和设计原理分析指南(基本概念篇)

码界西柚

领域驱动设计 DDD 领域驱动模型DDD 中台架构 领域驱动模型

TTS语音合成技术及其应用

数据堂

2023-06-22:一所学校里有一些班级,每个班级里有一些学生,现在每个班都会进行一场期末考试 给你一个二维数组 classes ,其中 classes[i] = [passi, totali] 表

福大大架构师每日一题

算法 福大大架构师每日一题

TiDB v7.1.0离线升级命令版

TiDB 社区干货传送门

实践案例 版本升级 7.x 实践

强化学习从基础到进阶-案例与实践[3]:表格型方法:Sarsa、Qlearning;蒙特卡洛策略、时序差分等以及Qlearning项目实战

汀丶人工智能

人工智能 深度学习 强化学习 Qlearning 6 月 优质更文活动

2023-06-23:redis中什么是缓存击穿?该如何解决?

福大大架构师每日一题

福大大架构师每日一题

RWA 成下一轮加密大叙事,PoseiSwap 的价值正在凸显

鳄鱼视界

驾驶新时代:车载语音识别的革命性进展与应用

数据堂

头一次见单例模式讲的如此透彻

越长大越悲伤

设计模式 单例模式

skywalking沉了一年的线程池插件bug被我解决了

夏奇

Java Agent Skywalking ClassLoader 字节码增强 开源贡献

老大给了个新需求:如何将汉字转换成拼音字母?1行Python代码搞定!

程序员晚枫

Python 拼音 汉字

TTS语音合成技术的挑战和未来发展

数据堂

在高度为h的堆中,元素个数最多和最少分别是多少?

福大大架构师每日一题

ChatGPT

无处不在 | 亚马逊云科技的 Java 生态

亚马逊云科技 (Amazon Web Services)

Java 开源 jdk

语音合成数据的重要性:打造自然流畅的语音合成体验

数据堂

情感语音识别技术及其应用

数据堂

情感语音识别技术的挑战和未来发展

数据堂

符号接在 busybox 中的妙用

ScratchLab

RWA 成下一轮加密大叙事,PoseiSwap 的价值正在凸显

股市老人

时间戳与时区

ScratchLab

RWA 成下一轮加密大叙事,PoseiSwap 的价值正在凸显

BlockChain先知

RWA 成下一轮加密大叙事,PoseiSwap 的价值正在凸显

西柚子

强化学习从基础到进阶-常见问题和面试必知必答[3]:表格型方法:Sarsa、Qlearning;蒙特卡洛策略、时序差分等以及Qlearning项目实战

汀丶人工智能

人工智能 深度学习 强化学习 Qlearning 6 月 优质更文活动

Airbnb使用净推荐值(NPS)预测用户再次预定率_大数据_Srini Penchikala_InfoQ精选文章