写点什么

从 Chukwa 到 Keystone :Netflix 的数据流水线演进

  • 2016-02-18
  • 本文字数:1504 字

    阅读完需:约 5 分钟

2015 年 12 月,Netflix 新的数据流水线 Keystone 上线。本文将介绍近年来 Netflix 数据流水线的演进。这是介绍新的 Keystone 数据流水线系列文章的第一篇。

Netflix 是一家数据驱动的公司,很多业务和产品决策均基于数据分析作出。数据流水线的作用是在云上收集、聚合、处理和移动数据。Netflix 的几乎每一款应用都会用到该数据流水线。

先来看 Netflix 数据流水线的一些数据:

  • 每天 5000 亿事件, 1.3PB 数据
  • 峰值时间每秒处理 800 万事件,24GB 数据

有数百种事件会通过该流水线,如:

  • 视频观看活动
  • UI 活动
  • 错误日志
  • 性能事件
  • 问题定位和诊断事件

这里需要注意的是,运维相关指标不通过该流水线处理,而是有一个独立的系统—— Atlas ,和 Netflix 的其他很多技术一样,该系统也开源了。

在过去这些年,因为需求的变化和技术的发展,Netflix 的数据流水线有几次大的变化。

V1.0 Chukwa 流水线

原始的数据流水线,唯一目的就是聚合事件,并将其上传到 Hadoop/Hive 进行批处理。从下图中也可以看出,架构相当简单。 Chukwa 收集数据,并以 Hadoop 顺序文件格式将它们写入到 S3 中。大数据平台团队进一步处理 S3 文件,然后以 Parquet 格式写入到 Hive 中。从一端到另一端的延迟高达 10 分钟。不过对于通常以天或小时的频率扫描数据的批处理作业而言,也足够了。

V1.5 带有实时分支的 Chukwa 流水线

随着 Kafka Elasticsearch 的出现,Netflix 对实时分析的需求也不断增长。这里的“实时”指的是延迟小于 1 分钟。

除了将事件上传到 S3/EMR,Chukwa 还能将流量发到 Kafka(实时分支的前端)。在 V1.5 中,大约有 30% 的事件会进入实时流水线。实时分支的核心是 Router。它负责将数据从 Kafka 路由到不同的地方,如 Elasticsearch 或次级 Kafka。

过去两年,Elasticsearch 在 Netflix 的应用增长迅速。现在有 150 个集群,总计 3500 个实例,上面有 1.3PB 数据。绝大部分数据都是通过该数据流水线进来的。

在 Chukwa 将流量发到 Kafka 时,既可以是完整的流,也可以是过滤之后的。有时还需要进一步过滤从 Chukwa 写到 Kafka 的流,这就是引入 Router 的目的所在——可以消耗一个 Kafka 主题,并生成一个不同的 Kafka 主题。

在数据到了 Kafka 之后,用户可以使用 Mantis Spark 或定制的应用来做实时的流处理。“自由与责任”(Freedom and Responsibility)是 Netflix 文化的基因。用户自己选择合适的工具来处理手头的任务。

因为研发团队擅长处理数据的大规模迁移,所以将 Router 设计成了一个托管服务。在运维路由服务的过程中,他们也得到几点教训:

  • Kafka 高层消费者可能会丢失分区(partition)所有权,在稳定运行一段时间后,不再处理某些分区。需要重启消费者进程才能恢复。
  • 当推出新代码时,有时高层的消费者会在重新平衡过程中陷入错误状态。
  • 将路由作业分组,放到一系列集群上,不过管理这些作业和集群的成本持续增长。所以需要更好的平台来管理路由作业。

V2.0 Keystone 流水线 (Kafka fronted)

除了上面提到的与路由相关的问题,还有其他几点考虑促使我们重新架构我们的数据流水线:

  • 简化架构
  • Kafka 实现复制,可以提高系统的可靠性,而 Chukwa 不支持复制。
  • Kafka 有一个非常活跃、生机勃勃的社区。

有 3 个主要组件:

  • 数据获取——有两种方式:使用 Java 库,直接写入 Kafka;或者
    发送给 HTTP 代理,然后由代理写入 Kafka。
  • 数据缓冲——Kafka 作为复制的持久消息队列。
  • 数据路由——路由服务负责将数据从前端的 Kafka 移到 S3 、 Elasticsearch 和次级 Kafka。

过去几个月,Keystone 已经应用于生产中。目前开发团队仍然在改进 Keystone,着重于 QoS、伸缩性、可用性、可运维性和自服务等方面。

查看英文原文: Evolution of the Netflix Data Pipeline

2016-02-18 18:002283
用户头像
臧秀涛 略懂技术的运营同学。

发布了 300 篇内容, 共 136.3 次阅读, 收获喜欢 35 次。

关注

评论

发布
暂无评论
发现更多内容

一次慢查询暴露的隐蔽的问题

AI乔治

Java sql 架构 SQL优化

分布式唯一ID解决方案-雪花算法

JavaPub

Java 分布式

【Mysql-InnoDB 系列】事务模型

程序员架构进阶

MySQL 架构 innodb 事务 28天写作

关于时间管理的思考

.

28天写作

时间之外的颜色「幻想短篇 5/28」

道伟

28天写作

外行话之不玩游戏,怎么做好游戏?

Justin

游戏 28天写作 外行话

【Mysql-InnoDB 系列】关于一致读

程序员架构进阶

MySQL 架构 innodb 28天写作

28天瞎写的第二百一六天:LumaQQ 和 luma 二三事

树上

28天写作

聚焦目标,团队工作不再一盘散沙(上)

一笑

管理 敏捷 目标管理 28天写作

项目管理系列(1)-如何开好一个周会

Ian哥

项目管理 28天写作

夜莺二次开发指南-资产设备管理

ning

滴滴夜莺 夜莺监控

Experience Never Gets Old

三只猫

28天写作

区块链与物联网融合发展的机遇与挑战

CECBC

人工智能

未来五年数字经济九大技术趋势,区块链成数字时代刚需!

CECBC

人工智能

线程池是怎么回收空闲线程的?如果你认为有定时任务,那你就错了!

看点代码再上班

Java 程序员 后端 开发

读《百度不需要用户》,我似乎懂得了领导者的无奈

李忠良

AI 企业

28 天带你玩转 Kubernetes-- 第五天(玩转Docker)

Java全栈封神

Docker Kubernetes k8s 28天写作

CSS13 - 定位

Mr.Cactus

html/css

夜莺二次开发指南-监控系统(3)

ning

滴滴夜莺 夜莺监控

一文学会Java死锁和CPU 100% 问题的排查技巧

AI乔治

Java 架构 死锁 cpu 100%

JFR定位线上问题实例 - JFR导致的雪崩问题定位与解决

AI乔治

Java 架构 线程

电动汽车的小历史及汽车方面的一个基础概念 (28天写作 Day5/28)

mtfelix

28天写作 电动汽车

小马哥刷力扣 - LeetCode 9. 回文数

小马哥

LeetCode 算法和数据结构 28天写作

Deno 双周刊 #1 - Deno 获 2020 JS 开源年度突破奖

hylerrix

typescript deno Node 周刊 V8

夜莺二次开发指南-用户资源中心

ning

滴滴夜莺 夜莺监控

甲方日常 84

句子

工作 随笔杂谈 日常

面试被问AQS、ReentrantLock答不出来?这些知识点让我和面试官聊了半小时!

Java鱼仔

Java 面试 并发 JUC

发达国家加紧数字货币政策布局

CECBC

数字货币

读书笔记:《Remote》

lidaobing

28天写作 Remote

如何让开发人员接受DevSecOps

啸天

DevOps 开发者 DevSecOps 升职加薪 应用安全

一文带你快速入门Canal,看这篇就够了!

大数据老哥

大数据 实时数仓 canal

从 Chukwa 到 Keystone :Netflix 的数据流水线演进_语言 & 开发_臧秀涛_InfoQ精选文章