写点什么

谷歌发布 TensorFlow Serving 开源项目:更快的将深度学习模型产品商业化

  • 2016-02-19
  • 本文字数:1377 字

    阅读完需:约 5 分钟

机器学习现在变得越来越流行了,不仅被大力应用于像 Google 和 Facebook 这样的网络公司,也被普遍应用到大量的创业公司当中。

机器学习经过几十年软件工业的实践已达到产品级别,现已应用在 Google 各系列产品中, 从 Google app 中的语音识别,Google Mail 中的自动回复到 Google Photo 的搜索。但要把这些机器学习模型做成服务对外提供使用是一种新的挑战。

TensorFlow 开源之后,今天 Google 又宣布发布面向生产环境的 TensorFlow Serving,旨在解决上述挑战。Google 软件工程师 Noah Fiedel 在博文中介绍,“TensorFlow Serving 是一个高性能、开源的机器学习服务系统,为生产环境及优化 TensorFlow 而设计。它更适合运行多个大规模模型,并支持模型生命周期管理、多种算法实验及有效地利用 GPU 资源。TensorFlow Serving 能够让训练好的模型更快、更易于投入生产环境使用。

这里有必要先科普下 TensorFlow 和 TensorFlow Serving 的区别:
TensorFlow 项目主要是基于各种机器学习算法构建模型,并为某些特定类型的数据输入做适应学习,而 TensorFlow Serving 则专注于让这些模型能够加入到产品环境中。开发者使用 TensorFlow 构建模型,然后 TensorFlow Serving 基于客户端输入的数据使用前面 TensorFlow 训练好的模型进行预测。
个人认为 TensorFlow Serving 是将 tensorflow 训练出来的模型更好的应用于生产环境中,通过它的 API 等支持的方式来方便对外提供稳定可靠的服务。TensorFlow Serving 的意义就在于能够很方便的将深度学习生产化,解决了模型无法提供服务的弊端,并且用的是 c++ 语言,性能上应该不错。这样以后深度学习方向的创业公司都能很方便的将产品商业化,保证 7*24 小时的可靠服务。

如谷哥所说,TensorFlow Serving 可以在不改变现有模型架构和 API 的基础上发布新的模型和实验数据到产品中。它不仅仅支持 TensorFlow 训练的模型,也可以扩展到其他类型的模型 (比如 Scikit Learn 生成的模型)。
下面讲下 TensorFlow Serving 使用的具体例子:
给个简单的监督学习的训练 pipeline,如图 1

图 1
在图 1 中,输入训练数据 (Data) 到学习者 (Learner) 中,输出训练成功的模型 (Model 1)。

一旦新版本的模型训练好就可以发布到服务系统 (TensorFlow Serving) 上,如图 2

图 2
在图 2 中,TensorFlow Serving 利用上面训练好的模型基于客户端 (Clients) 提供的数据进行预测结果。这里客户端和服务端之间的通信采用的是 RPC 协议 (Google 开源的一个高性能 RPC 的实现,gRPC 源代码见 http://www.grpc.io )。

对于生产环境来说,启动模型,随着时间不断迭代模型,新的训练数据出现需要训练优化模型,这些都是常态。现在有了 TensorFlow Serving 就可以在不停止服务的情况下更新模型和数据,Google 内部许多 pipelines 一直在运行。

TensorFlow Serving 采用 C++ 编写,支持 Linux。为性能做有优化,在 16 核至强 CPU 设备上,每核每秒能够处理超过 10 万个请求,这里包括 gRPC 和 TensorFlow 接口之间的处理时间。 TensorFlow Serving 代码和教程已经能够在GitHub 获取。


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2016-02-19 18:005277
用户头像

发布了 43 篇内容, 共 29.2 次阅读, 收获喜欢 7 次。

关注

评论

发布
暂无评论
发现更多内容

等保堡垒机选择哪个厂家好?咨询电话多少?

行云管家

等保 堡垒机 等级保护

C++基础知识

Geek_7ubdnf

c++

Linux常用命令

Geek_7ubdnf

Linux

NFTScan 与 AlienSwap 达成战略合作伙伴,双方在 NFT 数据层面展开合作

NFT Research

NFT

软件测试/测试开发 | 做到这几点,你也能成为 BAT 的抢手人!

测试人

软件测试 自动化测试 测试开发 测试工程师

传输丰富的特征层次结构以实现稳健的视觉跟踪 Transferring Rich Feature Hierarchies for Robust Visual Tracking

Geek_7ubdnf

神经网络

软件测试/测试开发丨Java or Python?测试开发工程师如何选择合适的编程语言?

测试人

Java Python 软件测试 自动化测试 测试开发

Apache IoTDB & SeaTunnel 联合 Meetup | 10月15日 线上直播预约开启!

Apache IoTDB

Linux挂载硬盘

Geek_7ubdnf

Linux

“天猫双11”背后的流量治理技术与标准实践

阿里巴巴中间件

阿里云 云原生 OpenSergo

接口压测实践-压力测试常见参数解释说明

不想敲代码

性能测试 接口测试 压力测试 测试工具 接口测试工具

对话 BitSail Contributor | 姚泽宇:新生火焰,未来亦可燎原

字节跳动数据平台

大数据 开源 字节跳动 数据引擎

年中盘点 | 2022年,PaaS 再升级

亚马逊云科技 (Amazon Web Services)

PaaS 亚马逊云科技 Builder 专栏

数据湖(十八):Flink与Iceberg整合SQL API操作

Lansonli

数据湖 1月月更

亚马逊云科技启示录:创新作帆,云计算的征途是汪洋大海

亚马逊云科技 (Amazon Web Services)

云计算 亚马逊云科技 Builder 专栏

EMQ & IoTDB 联合 Meetup 回顾 | 数据基础设施软件的应用实践分享

Apache IoTDB

​Apache IoTDB UDF 「Sample」的案例与最佳实践

Apache IoTDB

Linux安装tensorflow

Geek_7ubdnf

Linux

算力攻坚,视频云背后的「硬」核玩家

云布道师

阿里云 视频云

长安汽车*IoTDB | 构建1.5亿时间序列车况数据处理方案,查询稳定实现毫秒级返回

Apache IoTDB

不写代码就实现了自动化测试,面试官都惊呆了!Apipost的自动化测试功能强烈推荐

徐天

自动化测试 apipost

带你玩转OpenHarmony AI-基于海思NNIE的AI能力自定义

OpenHarmony开发者

OpenHarmony

中冶赛迪*IoTDB | 多项目全流程以IoTDB为时序数据处理方案,预计写入查询效率提升一倍

Apache IoTDB

Apache IoTDB 中的时间精度 | 铁头乔分享

Apache IoTDB

新一代 IT 服务管理平台 DOSM,助力企业数字化转型

云智慧AIOps社区

数字化转型 运维自动化 智能运维 云智慧 IT管理

站酷基于服务网格 ASM 的生产实践

阿里巴巴中间件

阿里云 云原生 服务网格

易观:2022年中国产业数字化发展成熟度指数报告

易观分析

数字化 产业 报告

【HA小知识】DRBD数据不一致怎么办?怎么处理?

行云管家

高可用 ha 高可用软件

使用 NineData 访问 SQL Server 数据库

NineData

sql 数据迁移 逻辑备份 NineData SQL Server

python 中 json 序列化汇总

ModStart

pip安装时 fatal error C1083 无法打开包括文件 “io.h” No such file or directory

Geek_7ubdnf

Python

谷歌发布TensorFlow Serving开源项目:更快的将深度学习模型产品商业化_语言 & 开发_侠天_InfoQ精选文章