QCon 演讲火热征集中,快来分享技术实践与洞见! 了解详情
写点什么

深度学习究竟是个啥?

  • 2016-01-05
  • 本文字数:1868 字

    阅读完需:约 6 分钟

“当我每次解雇一名语言学家的时候,那么语音识别的性能就在上升”。
——IBM 的 Frederick Jelinek

如果说语言学家代指机器学习和固定的模型结构,那么深度学习意味着专家整体性能的提高。

深度学习是一个本质上引人入胜的主题,非常令人憧憬。Michel Herszak 在 LinkedIn 写了一篇博客,谈到了其对于深度学习的理解。

深度学习简述

深度学习已经在计算机视觉、语言识别和自然语言理解等多个领域取得了巨大的成就。深度学习的概念源于人工神经网络的研究。深度学习结构包含一个多隐层的多层感知器。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由 Hinton 等人于 2006 年提出。基于深度信念网络 (DBN) 提出非监督贪婪逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外 Lecun 等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习就是一种特征学习方法,把原始数据通过一些简单的但是非线性的模型转变成为更高层次的,更加抽象的表达。

深入介绍深入学习

深入研究深度学习,发现其包含三个核心概念:多层组合、端到端的学习和分布式表示。

多层组合

多层表示更符合人类的学习方式,神经网络作为其中的一种,可以从一个单一的感知输入中产生多种理解,例如一个单词的发音(与其类比,深度学习具有惊人的相似)。从一个单词的发音到大脑的理解之间存在多个隐层,这与深度学习的过程很一致。多层表示中最令人兴奋的一件事情就是,原来在处理数据分类任务的时候,是通过数据科学家建模神经网络,而现在他们可以自动生成数据模型。

当前多数分类、回归等学习方法为浅层结构算法,很多情况下只有一层表示,其局限性在于有限样本和计算单元情况下对复杂函数的表示能力有限,针对复杂分类问题其泛化能力受到一定制约。深度学习可通过学习一种深层非线性网络结构,实现复杂函数逼近,表征输入数据分布式表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。(多层的好处是可以用较少的参数表示复杂的函数)

端到端的学习

在早期的深度学习中,关于语音识别的很多早期工作都存在一个问题,即各层表示之间的连接太密集。这个问题,Google 的语音 API 也遇到过,它会导致系统的过拟合问题。

今天,深度学习是一种端到端的学习方式,整个学习过程中不需要中间的和显著的人类参与。直接把海量数据投放到算法中,让数据自己说话,系统会自动从数据中学习。从输入到输出是一个完全自动的过程。

同样,可以再次将其再次与人类大脑随着时间的发展进行类比,这些变化影响了人们对于信息的提取方式。

分布式表示

深度学习算法本质上是分布式概念的应用。分布式表示背后的想法是,观察到的信息是众多因素协同工作所产生的结果。它将堆积如山的数据转化为数据流的组合。

这里举一个简单的例子:假如你想用一台电脑存储有关车辆的数据。

  • 首先,你有一辆大的蓝色福特汽车。
  • 其次,你有一个巨大的白色大众汽车。
  • 第三,你有一辆闪亮的 McQueen 汽车。
  • 第四,你有一个大的红色的 Vauxhal 汽车。

通过这种方式,你需要将所有数据存储到一个单一的存储单元中。当有一台新的车辆数据要加入的时候,需要加载数据单元的整个负载。这似乎不是很高效。

那么想象一下存储这些车辆的一种新方式。事实上,可以使用三个存储单元:一个用来描述尺寸(小型、中型、大型灯),一个用来存储颜色,最后一个存储品牌。这样就可以存储想要的所有车辆,都有非常相同的三个存储内存单元。这种工作方法是分布式表示的一个例子。从最基本的意义上讲,这代表了神经元一起工作的方式。而且它是深度机器学习的一个高效的例子。

总之,深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法。换句话来说,深度学习算法自动的提取分类需要的低层次或者高层次特征。Deep learning 能够得到更好地表示数据的特征,同时由于模型的层次、参数很多,能够具备足够强的表示能力。当然,deep learning 本身也不是完美的,也不是解决世间任何机器学习问题的利器。


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2016-01-05 18:005858
用户头像

发布了 268 篇内容, 共 124.1 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

连ChatGPT都不懂的五一调休,到底怎么来的?

禅道项目管理

程序员 GPT 调休

人脸识别:现代科技与隐私保护的博弈

来自四九城儿

大型水利投资集团,打造数智财资管理新范式

用友BIP

如何进行带有透明压缩技术的SSD基准测试?

ScaleFlux

扩容 存储技术 压缩数据 固态硬盘 企业数据

Bash 脚本中,特殊变量$0到底是什么?

wljslmz

bash Linux 三周年连更

好玩的策略游戏:群星Stellaris+DLC

真大的脸盆

Mac mac游戏 科幻策略游戏 游戏推荐 游戏安利

从五一的旅游热潮看,该如何实现数字文旅的转型升级?

加入高科技仿生人

低代码 旅游业 数字赋能

服务百万商家的系统,发布风险如何规避?微盟全链路灰度实践

TakinTalks稳定性社区

软件测试/测试开发丨Python装饰器常见报错信息、原因和解决方案

测试人

Python 软件测试 自动化测试 装饰器 测试开发

智能公厕设备升级方案@光明源智慧公厕

光明源智慧厕所

智慧城市

通过“群战”实现全民普惠,e签宝带来哪些思考?

ToB行业头条

开启云上高效开发新时代,华为云开发者日东莞站成功举办

华为云开发者联盟

云计算 华为云 华为云开发者联盟 企业号 4 月 PK 榜

云服务规划技术

阿泽🧸

云服务 三周年连更

龙蜥社区 4 月度运营大事件回顾

OpenAnolis小助手

开源 运营 龙蜥社区 sig 月度回顾

程序员真的要失业了?新技术潮如何改变我们的职业生涯? | 社区征文

一道圣光

职业成长 ChatGPT 三周年征文

Matlab实现神经网络

袁袁袁袁满

三周年连更

Confidential Containers发布0.5.0版本,龙蜥将基于八大特性构建开箱即用的机密容器解决方案

OpenAnolis小助手

开源 云原生 龙蜥社区 机密计算 机密容器

编程界的新星 — Rust 凭什么被业界青睐(内附学习资源)

Greptime 格睿科技

rust 云原生 时序数据库 分布式时序数据库

多云管理的六大价值

穿过生命散发芬芳

多云管理 三周年连更

3月底JAVA面试太难,吃透这份JAVA架构面试笔记后,成功涨到30K

程序知音

Java java面试 java架构 后端技术 Java面试八股文

ShareSDK 抖音平台注册指南

MobTech袤博科技

【民生证券】敏捷转型大步迈进!民生证券敏捷实践培训圆满结束!

嘉为蓝鲸

敏捷转型 民生证券

苹果商店上架流程_App上架苹果流程及注意事项

雪奈椰子

LoRA: 大语言模型个性化的最佳实践

Zilliz

Towhee 大语言模型

软件测试/测试开发丨面试题之软素质与反问面试官篇(附答案)

测试人

软件测试 自动化测试 测试开发 测试用例 ChatGPT

Matlab实现PCA算法

Shine

三周年连更

SBOM喊话医疗器械网络安全:别慌,我罩你!Part Ⅱ

安势信息

网络安全 SBOM 开源组件 医疗器械 医疗网安

语义分割标注:从认知到实践

来自四九城儿

《流畅的Python》第二版上市了,值得入手么?

Python猫

Python

什么是对象存储?对象存储的原理是什么?有哪些开源的、非开源的对象存储服务?

Java架构历程

对象存储 三周年连更

深度学习究竟是个啥?_语言 & 开发_张天雷_InfoQ精选文章