写点什么

从 Twitter 留言预测用户收入

  • 2015-12-08
  • 本文字数:1415 字

    阅读完需:约 5 分钟

利用社交媒体上发表的内容来自动推断用户特征,对于社会科学、市场学和政治学研究有着非常重要的意义。近日,宾夕法尼亚大学的 Daniel Preoţiuc-Pietro 等人就利用 Twitter 上的数据构建了预测用户收入的模型。该模型很好的揭露了不同特征分类和收入之间的关系,同时也发现了很多有意思的现象。

随着信息技术的迅速发展,社交媒体也开始为越来越多的人提供服务。社交网站中所接收的用户数据也随之飞速增长,为社会科学中复杂问题的研究提供了充分支撑。对这些数据的分析可以很好的披露出语言模式和用户特征(如位置、年纪以及政治倾向等)。由此,这些信息可以用于大规模社会科学研究,并可帮助进行更有针对性的广告营销等。

Daniel 等人的研究以自动推导社交媒体中用户的收入为出发点。在训练和测试阶段,该团队使用了已经表明收入的 Twitter 用户数据集,其中包括了 Twitter 平台的相关统计数据和历史内容。为了便于分析,Daniel 等人的研究以 Twitter 用户和职位之间的映射为基础,采用了英国政府的标准化职业分类(Standard Occupational Classification,SOC)方法,将所有职业根据职能要求和内容分成了9 个大组。最终的测试数据就牵涉到了9 个组的5191 个用户,及其10,796,836 条留言。

预测模型使用了很多特征作为参考,包括了简单的用户简历特征(如朋友数量、追随者数量以及平均每天留言的数量等)、人口统计特征(如年纪、性别、政治倾向以及智力等)、用户情绪特征(开心的、伤心的、生气的以及惊讶的留言的比例等)和浅层的文本特征(非复制留言的比例、转发留言的比例以及平均的留言数量等)。

而且,他们采用了线性和非线性学习算法来构建收入模型。其线性学习算法使用的是带 Elastic Net 调节 logistic 回归分析。第一个非线性学习算法则使用带径向基核函数(Radial Basis Function ,RBF)的支持向量机(Support Vector Machine,SVM)。但由于SVM 并不支持指定最重要的若干特征,Daniel 等人又采用高斯过程(Gaussian Process)构建了一个贝叶斯非参数化的统计框架。最后,预测模型把所有特征集模型的结果采用线性权重的方式结合在了一起。

为了测量预测模型的精确度,Daniel 等人的研究首先针对用户收入进行了评估,其试验过程采用了十折交叉验证:把原始的数据随机分成10 个部分,选择其中一个作为测试数据,一个作为参数微调的数据,剩下的8 个作为训练数据。最终结果表明,用户数据和用户发表的内容之间的皮尔逊相关系数最大可达到0.633(0.6-0.8 表示“强相关”),证实了模型的精确性。

该工作的另外一个目标是深入发掘Twitter 上与用户收入相关的特征。通过检查模型的输出和对参数进行量化分析,团队发掘出了收入和语言使用以及Twitter 中用户行为之间的关系,其中包括了很多已知和未知的现象。例如,已经为公众所接受和熟知的现象是:收入和受教育程度、智力、年龄以及性别等相关。另外的一些发现就显得特别有意思:无派别且生活从容的用户收入较高;收入越高的用户越容易产生生气和惧怕的情绪,从而经常发表一些感性的内容;高收入用户更多地谈论政治,非政府组织以及合作的话题,而低收入者则更多地倾向于使用低俗语言。


感谢董志南对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2015-12-08 18:002424
用户头像

发布了 268 篇内容, 共 122.4 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

决定论:区块链的哲学

CECBC

浅谈云上攻防——对象存储服务访问策略评估机制研究

腾讯安全云鼎实验室

云原生 对象存储 数据安全 云上安全攻防

网络安全行业真的内卷了吗?

网络安全学海

网络安全 信息安全 网络 渗透测试 安全漏洞

QDS06 Iperf 测网速

耳东@Erdong

8月日更 qds iperf

出自清华大神之手的JVM实战手册,刚上架GitHub点赞就达到85k

Java~~~

Java 架构 面试 JVM 多线程

JavaScript 正则表达式的 5 个方法

devpoint

regex match 8月日更

mPaaS 月度小报|为采购而生,全新资源包上架;前端 2D 游戏化互动入门指南

蚂蚁集团移动开发平台 mPaaS

mPaaS 小程序市场

无服务框架-OpenFaas

QiLab

云原生的数据云,下一个十年的数字化转型趋势

星环科技

数字化转型 云数据库

投资ipfs挖矿有风险吗?投资ipfs挖矿要多少钱?

投资ipfs挖矿有风险吗 投资ipfs挖矿要多少钱

中国如何应对中美科技博弈?

石云升

科技革命 8月日更 启发 中美博弈

Drools 基础语法

LeifChen

drools 规则引擎 8月日更

干货分享!通过Dapr快速落地DDD,实现高并发

行云创新

GitHub上火了这份堪称神级的SpringBoot手册,竟出自滴滴之手

Java~~~

Java 架构 面试 微服务 Spring Boot

闭关修炼21天,“啃完”283页pdf,我终于4面拿下字节跳动offer

Java 程序员 面试 计算机

Spring

ltc

spring

更智能更高效,区块链打造更美服装行业

CECBC

面对物联网安全隐患高墙,熵核科技如何实现突围

熵核科技

物联网安全

前端之算法(三)归并排序

Augus

数据结构与算法 8月日更

夯实基础,踏步云升 | 云原生 DevOps 入门必读

CODING DevOps

DevOps 云原生 CODING

【得物技术】初探 OpenResty

得物技术

nginx 性能 openresty tengine

信息过载,加班无度的时代,我们需要「洞穴空间」

非著名程序员

个人成长 提升认知 思维 8月日更

实时音视频,是一门好的ToB生意吗?

ToB行业头条

百度程序员:面试官看过我的博客,所以没敢问我多线程

今晚早点睡

Java 百度 程序员 面试 计算机

架构实战营毕业总结

9527

#架构实战营

让GitHub炸锅的深入理解MySQL实战手册,竟出自阿里云“藏经阁”

Java~~~

Java MySQL 数据库 架构 面试

在云中进行灾难恢复的5种有效方式

云计算

智能合约系统开发|智能合约DAPP搭建

Geek_23f0c3

DeFi去中心化系统开发 DAPP智能合约交易系统开发

音频技术及行业的发展

声网

音频技术

支持高性能计算场景,博云容器云打造智能算力引擎

BoCloud博云

容器 高性能计算

趁着课余时间学点Python(十二)面向对象的理解(结局)

ベ布小禅

8月日更

从Twitter留言预测用户收入_大数据_张天雷_InfoQ精选文章