写点什么

Yelp 是如何使用深度学习对商业照片进行分类的

  • 2015-11-06
  • 本文字数:2403 字

    阅读完需:约 8 分钟

Yelp 是美国最大点评网站,拥有世界各地的 Yelper 上传的成千上万的照片。各种各样的照片给进入当地的商业提供了一个丰富的窗口。通过开发一个照片理解系统使 Yelp 能够创建有关个人照片的语义数据。跟 Yelp 第一次在基于内容的照片多样化方面所做的尝试一样,由系统生成的数据正在增强 Yelp 近期推出的封面照片多样化、标签式照片浏览等服务。

构建一个照片分类器

对于理解照片中的模棱两可的目标,其实有许多不同的方式。一开始,为了帮助简化 Yelp 的问题,Yelp 只专注于将照片分类为几个预定义的类。之后,Yelp 又只专注于关于饭店的照片类别。

事实上将照片进行分类,就可以将其当做机器学习中的分类任务,需要开发一个分类器,Yelp 首先需要做的就是收集训练数据,在图片分类任务中就是收集很多标签已知的照片。Yelp 收集这些信息可以通过几种不同的方式:

  • 照片标题:在很多照片的标题中都包含代表照片自身含义的词汇,例如,很多“菜单”照片的标题中包含单词“菜单”。为了识别这些关于食物的项目,Yelp 依靠自己的菜单结构(例如, http://www.yelp.com/menu/gary-danko-san-francisco/ ),它保留了每种食物的商业名单。Yelp 发现,将列表中的食物项目与照片的标题进行匹配产生了一个高准确率的数据集。
  • 照片属性:当上传照片到 Yelp 上时,用户允许标记照片的一些属性,虽然它们并不总是准确的,但仍然可以很有效地帮助照片分类。
  • 众包:通过众包可以让大众自动参与照片的标注,并同时纠正一些错误的标注。Yelp 已经发现,通过众包 Yelp 通过合理的成本(在时间和金钱)获得了质量总体良好的标签。众包体现了一种群体智能。

一旦 Yelp 有了标签数据,Yelp 就开始采用“AlexNet”形式的深度卷积神经网络(CNNs)来识别这些图片(因为这种方法是一种监督学习方法,非监督学习目前仍然是深度学习的难点方向)。CNNs 是由多个卷积层组成,ReLU 层、pooling 层、局部响应正则化层和全连接层。Yelp 的 CNN 被建立在基于 Caffe 架构的 AWS EC2 GPU 实例上。Yelp 喜欢 Caffe,因为它简单易用、高性能、模块化、开源、还一直在不断完善。为了应对 Caffe 的软件依赖,Yelp 使用 Docker 封装了 Yelp 的 CNN,以便它可以更容易地部署。

Yelp 还创建了抽象,以确保 Yelp 的 CNN 可以很容易地与其他形式的分类器进行集成,包括 CNN 的不同实例。如下图所示,Yelp 的基线是一个“Caffe 分类器”,它通过 Caffe 的方式运行 CNN;它是一个抽象分类器的一种特殊形式,可以采取不同的信号,并执行不同的分类算法。Yelp 目前的“facade”分类器,是一个集成分类器,采用了不同分类结果的加权平均。如果 Yelp 决定进一步集成依赖于其它信号的新的分类器,这将让问题变得更加简单。

Yelp 在一个均匀黄金分割的 2500 张照片的测试集上进行试验,Yelp 目前的“facade”分类器的整体精确度达到了 94%,召回率达到了 70%。根据 Yelp 的描述,虽然这些数字绝对可以再提高,但 Yelp 发现对于下面描述的应用它们已经足够了。

照片分类服务

Yelp 使用面向服务的架构(SOA),Yelp 做了一个 RESTful 照片分类服务,用来支持现有的和即将推出的 Yelp 的应用程序。由于服务预计拥有不止一个分类器(例如,不同的版本或为不同类型的业务),该服务 API 使用一个分类器 ID,一个行业 ID,以及可选的类,然后返回所有属于该行业的照片,其已经通过分类器被归类:

Yelp 使用一个标准的 MySQL 数据库服务器来承载所有的分类结果,所有的服务请求可以通过简单的数据库查询被处理。为了避免更昂贵的实时分类,因为 Yelp 目前的应用并不取决于最新的照片分类,所以 Yelp 只执行线下分类。该架构如下图所示:对于每一个新的分类器,Yelp 扫描所有的照片,并且将分类结果存储在一个数据库中。扫描在计算上消耗很大,但通过将分类器在任意多的机器上进行并行处理,Yelp 可以减轻这一点。扫描结束后,Yelp 会每天自动收集新的照片,并将它们发送到一个进行分类和数据库负载的批次中:

应用:封面照片多样化

一旦有了照片分类服务,就可以有效地增强 Yelp 的许多关键功能。Yelp 的业务详细信息页面显示了一组“封面照片”,基于用户的反馈和某些照片的属性,它们能够通过照片评分引擎进行推荐。但是,目前 Yelp 的封面照片存在一个典型问题,即所选的照片缺乏多样性,例如,如下图所示,所有封面照片都是关于食物的(拉面),用户无法看到其他方面的照片,除非他们点击“查看全部”按钮。

通过照片分类服务,现在就可以让封面照片变得多样化,Yelp 可以容易地确定最高得分的非食品的照片,然后将其纳入封面照片。通过严格的 A / B 测试,Yelp 已经证实饭店的浏览者更愿意看到一个显示突出的“食品”照片和突出的“非食品”照片,以及两个小“食品”的照片和另外两个“非食品”照片,如下图所示。多样化大大增加了 Yelp 用户与照片之间的互动。

应用:标签式浏览照片

因为任何人浏览 Yelp 照片都是在有了解之前,大部分来自于饭店的 Yelp 照片都是食物。但 Yelp 从用户中得到反馈,他们发现用户关心的可不仅仅是食物。有些人使用 Yelp 的图片用来检查一个特殊事件的气氛或导航到一个第一次去的地点,而其他人使用 Yelp 的照片用于一些更严肃的应用,如发现餐厅是否能容纳残疾的顾客。随着标签式照片浏览的推出,所有这些任务现在都变得更容易、更高效。

Yelp 表示,标签式照片浏览是他们的照片分类服务现在提供的最显著的应用。照片现在在各自的标签(类)下进行组织;从下图可以看出,跳到你正在寻找的准确信息现在变得更加容易。

下一步是什么

任何机器学习系统都不可能是完美的。Yelp 表示,如果你想帮助提高 Yelp 照片分类的质量,请随意标注你看到的任何未分类的照片。


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群)。

2015-11-06 18:003117
用户头像

发布了 268 篇内容, 共 121.9 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

没有7年经验你真学不会这份SpringCloud实战演练文档

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

🏆「作者推荐」Java技术专题-JDK/JVM的新储君—GraalVM和Quarkus

洛神灬殇

Java JVM GraalVM 8月日更

Golang:再谈生产者消费者模型

Regan Yue

协程 Go 语言 8月日更

国产接口调试工具ApiPost中的内置变量

Proud lion

大前端 测试 后端 Postman 开发工具

后Kubernetes时代的虚拟机管理技术之kubevirt篇

谐云

虚拟机 #Kubernetes#

KubeCube开源:魔方六面,降阶Kubernetes落地应用

网易数帆

开源 Kubernetes 容器 KubeCube

web技术分析| 一篇前端图像处理秘籍

anyRTC开发者

大前端 音视频 WebRTC web技术分享

DEX去中心化交易所自动刷量机器人开发|去中心化做市机器人

Geek_23f0c3

去中心化交易所系统开发 量化交易机器人系统开发 量化机器人 做市机器人 自动刷量机器人

云小课 | 详解华为云独享型负载均衡如何计费

华为云开发者联盟

负载均衡 华为云 弹性负载均衡 独享型ELB实例 独享型负载均衡

Android模块化开发实践

vivo互联网技术

android 架构 开发 项目实战 模块

由阿里三位专家撰写:数据库高效优化:架构、规范SQL技巧文档

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

华为高级技术专家多年经验分享微服务治理体系、架构及实践文档

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

终于有大牛把Spring微服务架构设计第2版文档给整理完毕了

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

传统到敏捷的转型中,谁更适合做Scrum Master?

华为云开发者联盟

Scrum 敏捷 团队 项目经理 Scrum Master

NameServer 核心原理解析

leonsh

RocketMQ 消息队列 NameServer

6种常用Bean拷贝工具一览

码农参上

8月日更 对象拷贝

打造数字人民币的大运应用场景

CECBC

多样数字人民币钱包来袭,阻力与动力并存

CECBC

从lowcode看下一代前端应用框架

百度Geek说

大前端 lowcode

区块链+物联网设备,能产生什么反应?

CECBC

一分钟学会使用ApiPost中的全局参数和目录参数

CodeNongXiaoW

大前端 测试 后端 接口工具

来了!《中国移动2021智能硬件质量报告》正式发布

在?进来看看新一季周边到底做点啥?【话题讨论】

气气

话题讨论

MySQL 不完全入门指南

Java 编程 架构 面试 架构师

protocol buffer的高效编码方式

程序那些事

Java protobuf 程序那些事

零基础入门:基于开源WebRTC,从0到1实现实时音视频聊天功能

JackJiang

音视频 WebRTC 即时通讯 IM

模块一作业

小智

架构实战营

【虚拟机专栏】智能合约执行引擎的前世今生

趣链科技

Java NIO在接口自动化中应用

FunTester

Java nio 接口测试 测试开发

20年IT老民工苦心编撰成超大流量分布式系统架构解决方案文档

公众号_愿天堂没有BUG

Java 编程 程序员 架构 面试

GraphQL设计思想

Ryan Zheng

graphql

Yelp是如何使用深度学习对商业照片进行分类的_语言 & 开发_张天雷_InfoQ精选文章