写点什么

歌曲推荐系统实践:Pandas、SciPy 和 D3.js

  • 2015-05-07
  • 本文字数:1997 字

    阅读完需:约 7 分钟

时至今日,虽然海量数据、大数据、数据挖掘、个性化等名词术语已耳熟能详,仿佛谁人两两遇到都可以轻易写个挖掘系统出来,但情况真的是这样么? Flipboard 数据产品部门的工程师 Ben Frederickson 在与友人的讨论中就发现,写个推荐系统并没有那么轻而易举,为此他专门写了一篇博文来记录自己实现的整个过程,利用的工具是数据挖掘领域很热门的 Pandas SciPy 函数库,最后使用 D3.js 进行交互和可视化,相关的代码都放在了 GitHub 上。

具体来讲,一个推荐系统包括数据的获取和存储,相似度的计算以及最终结果的可视化,下面分别阐述。

数据获取

Ben 的推荐系统是针对 Last.fm 用户的,所用数据集是通过 Last.fm 的 API 获取的大约 36 万用户对歌手的喜爱程度。程度以用户对该歌手的播放次数为指标,数据集大小在 1 千 7 百万左右。想要在程序中使用这个数据集,ben 通过 Python 数据挖掘工具 Pandas 的 read_table 将 csv 格式的数据导入成为表格。

复制代码
data = pandas.read_table("usersha1-artmbid-artname-plays.tsv",
usecols=[0, 2, 3],
names=['user', 'artist', 'plays'])

将数据加载为表格以后,剩下的任务就是计算相似度了,ben 给出了三种相似度的计算方法,分别是简单的相似度计算,余弦相似度和来自信息学的相似度计算,并给出了各类方法最后的可视化比较。

简单相似度

简单相似度计算,顾名思义,是最简单的相似度计算方法,用来计算两个歌手的相似程度。这种计算方法,忽略歌手被用户播放的次数,只是简单计算两个歌手重叠的用户数目。

复制代码
def overlap(a, b):
return len(a.intersection(b))

这种计算方法的问题在于,那些流行的歌手的存在,会极大影响相似度的准确性。例如几乎每个用户都听过 Radiohead、Coldplay 和披头士,这使得简单相似度方法给出的答案里面,越是流行的歌手越相似。

为了解决这个问题,ben 引入了新的相似度定义, Jaccard 相似度,利用数据挖掘中常用的正则化(Normalize)手段,将简单相似度正则化,消除用户数目对歌手相似度的影响,具体计算方法如下:

复制代码
def jaccard(a, b):
intersection = float(len(a.intersection(b)))
return intersection / (len(a) + len(b) - intersection)

类似的正则化方法还有很多,比如 Dice 正则和 Ochiai 正则等,从一定程度上改善了相似度计算的准确性,但也带来了一点问题,即集合大小相近的歌手会更加相似,ben 觉得这样也并不合理,因此进一步提出了使用余弦相似度。

余弦相似度

上文中提到的简单相似度抛弃了用户对歌手播放次数这一重要信息,实际上它代表了用户对该歌手的喜爱程度,细想一下是非常有道理的,一个披头士的重度听众怎么能够跟听过寥寥几曲的听众一样呢?那么,利用上播放次数这一信息最直接的办法,就是余弦相似度方法,计算公式如下:

复制代码
def cosine(a, b):
return dot(a, b.T)[0, 0] / (norm2(a) * norm2(b))

通过上面公式,我们就可以将播放次数引入到相似度的计算中。公式中的 a 和 b 分别代表歌手的听众向量,通过下面的代码构造生成:

复制代码
# map each username to a unique numeric value
userids = defaultdict(lambda: len(userids))
data['userid'] = data['user'].map(userids.__getitem__)
# map each artist to a sparse vector of their users
artists = dict((artist, csr_matrix(
(group['plays'], (zeros(len(group)), group['userid'])),
shape=[1, len(userids)]))
for artist, group in data.groupby('artist'))

来自信息学的相似度

除了单纯利用播放次数以外,ben 还介绍了来自信息学的,确切来讲是来自搜索引擎中常用的自然语言处理技术,来计算歌手之间的相似度,即词频 - 逆文档频率(TF-IDF)作为向量的相似度计算方法。

这种相似度的发明,来自搜索引擎对检索结果排序的需求,即计算检索关键词与检索返回的文档之间的相似程度。具体来讲,如果某个词语在一个描述语句中出现的频率很高(TF 很高),而在其他描述语句中很少出现(IDF 很高),则认为该词语具有很好的区分文档的能力,其 TF-IDF 值就比较高,那么对应到歌曲推荐这个任务来讲,ben 将用户(听众)看作一个个的单词,来进一步考虑特定用户对相似度准确性的影响,可谓是三种方法中比较准确的一个了,ben 还在原文中用 D3.js 给出了几种相似度的效果对比分析。

总结

在专业术语充斥耳畔的今天,能够有耐心真正自己去尝试一些想当然的东西、算法甚至系统,是非常难能可贵的精神,而收获也是非常丰富的。Ben 以 Python 中常用的 Pandas 和 SciPy 等工具,展现了从头实现一个推荐系统的方法,正是这种精神的实践典范。


感谢崔康对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群)。

2015-05-07 08:094588
用户头像

发布了 268 篇内容, 共 125.7 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

中国浙江|浙江省级人才计划申报指南来了!

科兴未来News

双创比赛

阿里P8架构师珍藏版:SpringBoot入门到进阶笔记(面面俱到,太全了)

采菊东篱下

编程 微服务

掌握动态规划,从“什么问题适合用”及“解题思路”入手

华为云开发者联盟

人工智能 AI 华为云 华为云开发者联盟 企业号 4 月 PK 榜

基于STM32设计的音乐播放器

DS小龙哥

三周年连更

终于有人把动态规划、冒泡排序、二叉树、链表、栈全部讲清楚了

Java你猿哥

数据结构 算法 二叉树 排序 LeetCode算法

华为云开源项目OpenTiny中TinyVue有什么优势?

英勇无比的消炎药

开源 Vue 组件库

每个Java程序员都必须知道的四种负载均衡算法

做梦都在改BUG

Java 负载均衡 负载均衡算法

【堡垒机】免费堡垒机介绍以及下载看这里!

行云管家

堡垒机 运维审计 免费 小微企业

如何用DataTester设计并创建可视化实验

字节跳动数据平台

AB testing实战 A/B测试 企业号 4 月 PK 榜

共享电单车生产厂家如何选择

共享电单车厂家

共享电动车厂家 共享电单车生产 共享电动车厂商 本铯智能共享电动车商家

已献出膝盖!GitHub上的宝藏级SpringBoot核心宝典,讲得太清晰了

做梦都在改BUG

Java 架构 微服务 Spring Boot 框架

GitHub爆款!Java性能优化:轻松道破软件性能调优,不止搞定JVM

Java你猿哥

Java JVM Java性能优化

Android C++系列:C++11函数特殊特性

轻口味

c++ 三周年连更

面试官:介绍一下什么是缓存雪崩、缓存击穿、缓存穿透?

Java你猿哥

redis 面试题 缓存穿透 缓存击穿 缓存雪崩

超简单!Java 项目自动生成接口文档教程

Apifox

Java 接口文档 API 文档生成 自动生成

阿里“妈宝级”之作,Kubernetes原理剖析与实战应用手册,太全了

做梦都在改BUG

Java Kubernetes k8s

ThreadLocal源码分析

做梦都在改BUG

Java 源码 多线程 ThreadLocal

ARB链质押挖矿代币空投游戏dapp系统开发合约定制

开发微hkkf5566

品牌活动|行云创新出席“新工业·智物联”全国巡回 CEO 峰会

行云创新

行云创新 新工业 智物联 全国巡回CEO峰会珠海站

The Beacon链游NFT系统开发技术

薇電13242772558

NFT

JSF源码分析(一)

京东科技开发者

spring jsf 企业号 4 月 PK 榜

阿里开发实录:慢SQL拖垮数据库并引发故障

Java永远的神

数据库 sql 程序员 后端 架构师

阿里云机器学习PAI发布基于HLO的全自动分布式系统 TePDist,并宣布开源!

阿里云大数据AI技术

深度学习 分布式系统 开源项目 企业号 4 月 PK 榜

简直人生外挂,直接涨薪25K,跪谢这份Java性能调优实战宝典

做梦都在改BUG

Java 性能优化 JVM 性能调优

商业堡垒机是什么意思?有免费版的商业堡垒机吗?

行云管家

网络安全 堡垒机 运维审计

《人间失格》

后台技术汇

三周年连更 人间失格

阿里p8强烈推荐这部《从零开始学架构》堪称GitHub最强!

Java你猿哥

Java 架构 ssm 架构设计

java 开发 SSM 框架整合之 MyBatis 动态 SQL

Java你猿哥

Java sql mybatis SSM框架 if

拿来吧你!保姆级Docker底层原理及源码实战手册,上线点赞破10W

做梦都在改BUG

Java Docker 容器

一文详解RocketMQ-Spring的源码解析与实战

华为云开发者联盟

开发 华为云 华为云开发者联盟 企业号 4 月 PK 榜

我认真总结并分析了Spring事务失效的十种常见场景

做梦都在改BUG

Java spring Spring事务

歌曲推荐系统实践:Pandas、SciPy和D3.js_语言 & 开发_张天雷_InfoQ精选文章