快手、孩子王、华为等专家分享大模型在电商运营、母婴消费、翻译等行业场景的实际应用 了解详情
写点什么

Mirador:用于可视化搜索复杂数据集的免费工具

  • 2014-10-19
  • 本文字数:1741 字

    阅读完需:约 6 分钟

Mirador 是一个用于可视化搜索复杂数据集的开源工具。Mirador 由哈佛大学的 Sabeti 实验室、Broad 研究所以及信息可视化领域世界知名设计师 Ben Fry 创建的 Fathom Information Design 工作室联合开发的。传染病动力学中心和美国国家卫生研究院所赞助的 MIDAS 网络对 Mirador 项目提供了最初的支持。该工具主要用于复杂数据集的可视化搜索,最终目标是找到数据间可能存在的趋势或者关联,然后通过更专业的统计工具对这些趋势或者关联进行测试,推到出新的猜想。

原则上,Mirador 能够接受任何满足标准格式的表格作为输入数据。但是,开发人员对 Mirador 进行了一定的限制,使得它只能接受医疗卫生、流行病和传染病相关的数据。Mirador 允许检查数据集中任何两个变量组合所构成的数据图(包括散射图、柱状图以及 eikosograms 图等),并根据感兴趣的变量的关联值对变量进行排序。基于 Mirador 工具,用户可以进一步结合 Miralib、Gephi 等进行更加复杂的分析。例如,通过把 Mirador 的输出导入到 Gephi 中,用户可以计算网络模块度、节点集中度等等。

目前,Mirador 已经成为通过 GNU 公共授权 2.0 版本发布的开源项目。用户可以通过 Github 来下载 Mirador 工具的 Windows 版本 OS X 版本。更多 Mirador 相关的信息,读者可登录其官网或者 GitHub 查看。

更多内容可参见:

  • Mirador 数据竞争:探索公共数据、利用新发现赢取奖项 目前,Sabeti 实验室已经发起了一场关于上传数据赢大奖的竞赛。在 9 月 28 日至 10 月 28 日期间,用户只要通过应用程序上传自己的新发现到自己的账户就可以参与竞争。最终,Sabeti 实验室会召集相关领域的专家评选出数据集的前三名,并给与现金奖励。
  • 关联数据的网络表示:关于如何把带 Python 脚本的 Mirador 输出信息与其他可视化工具结合起来产生关联矩阵网络表示的教程 Mirador 能够检查数据集中任何两个变量组合所构成的数据图,并根据感兴趣变量的关联值对变量进行排序。它并不能计算所有变量间的关联性。但是,这一关联性正是产生系统关联矩阵的可视化表示以及数据中依赖结构的总体图像所必须的。为了计算该关联性,教程指出可以首先导出所感兴趣的变量的数据。然后,利用 Mirador 中的提供底层统计计算功能的数据库 Miralib 来计算关联矩阵。最后,采用 Gephi 或者其他软件打开关联矩阵即可完成网络数据的可视化工作。
  • 带 Mirador 的统计建模:关于如何在机器学习中使用 Mirador 的教程 该教程主要介绍了如何利用 Mirador 所找到的解释变量来训练一个逻辑表达式和神经网络预测器。教程使用示例文件夹中的肝炎数据集作为输入。其中,共包含寻找解释变量、输入缺失值、从已有数据中学习模型、逻辑表达式、神经网络等五个步骤。Mirador 主要负责在第一步中寻找解释变量,输出这些变量相关的数据。最终,所构建的预测器在测试集中的成功率为 85.11%。
  • 在复杂数据集中寻找关联:关于 Mirador 设计和开发的帖子
  • 定量测定关联性:描述基于互信息测量关联性的帖子 该帖子主要描述了互信息的定量测量方法,从而可以对数据的关联性进行排序。对包含大量变量的负责数据数据集,对其中变量的两两相关性进行表示是非常困难的。通常,这类工作需要很多的图标才能表示完整。然而,这些大量的图标中只有很少一部分是表示相关变量对的。为了能够提高效率,就需要某种索引或者等级制度来标注统计相关性。以互信息量作为标准正好可以作为一种尝试。由美国数学家 Claude E. Shannon 所提出的香农熵出发,互信息的概念被慢慢引入。最后,作者展示了如何利用互信息作为统计相关性测量标准来更清晰的表示变量之间的关系。
  • 可视化表示关联性:讨论利用 eikosogram 绘图来表示条件依赖的帖子 成功可视化的一个重要标志就是它能够揭露出不同变量之间的某种未知关系,从而让观察者可以方便的找到数据背后隐藏的信息。如果变量可以用实数表示,散点图是一种经常被使用的、用来表示两个变量关系的数据分析图。然而,对于一些变量,散点图并不能直观的展示出变量间的真正关系。作者发现,利用 eikosogram 图表示是最有效解决散点图问题的方法。

感谢郭蕾对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2014-10-19 03:202185
用户头像

发布了 268 篇内容, 共 121.6 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

SpringCloud Alibaba微服务实战十 - 服务网关SpringCloud Gateway

AI乔治

Java 架构 微服务 Spring Cloud

从前世今生聊一聊,大厂为啥亲睐时序数据库

华为云开发者联盟

数据库 场景 时序

SpringCloud Alibaba微服务实战二 - 服务注册

AI乔治

Java 架构 微服务 Spring Cloud

朋友不讲武德急催我给他Java干货教程,我劝他耗子尾汁并丢给他一份GitHub上标星115k+的Java教程,他看了之后连忙向我道歉!

Java架构之路

Java 程序员 架构 面试 编程语言

奉劝各位准备面试的Java程序员耗子尾汁赶紧扔掉网上那些千篇一律的面试题,这份《写给大忙人看的Java核心技术》能够让你快速复习

Java架构之路

Java 程序员 架构 面试 编程语言

SpringCloud Alibaba微服务实战四 - 版本管理

AI乔治

Java 架构 微服务 Spring Cloud

SpringCloud Alibaba微服务实战八 - Seata 整合Nacos

AI乔治

Java 架构 微服务 Spring Cloud

智慧公安二维码报警定位系统,高速路二维码定位报警开发

13530558032

区块链的常识之,什么是区块链股份授权证明机制DPoS?

CECBC

区块链 共识机制

一文带你读懂!华为云在ACMUG技术沙龙上都透露了些啥?

华为云开发者联盟

数据库 大数据 数据

SpringCloud Alibaba微服务实战三 - 服务调用

AI乔治

Java 架构 微服务 Spring Cloud

区块链农产品溯源解决方案,农产品追溯系统价格

13530558032

Docker基础与实战,看这一篇就够了

AI乔治

Java Docker spring 架构

想了解物联网应用的自动部署,看这篇就够了

华为云开发者联盟

服务器 华为云 部署

数据库:我没有带闪,不讲武德

比伯

Java 编程 程序员 面试 计算机

SpringCloud Alibaba微服务实战一基础环境准备

AI乔治

Java 架构 微服务 Spring Cloud

SpringCloud Alibaba微服务实战九 - Seata 容器化

AI乔治

Java 架构 微服务 Spring Cloud

如何在ForeSpider数据采集器中设置代理IP

前嗅大数据

大数据 爬虫 数据采集 代理IP 代理IP设置

阿里P8熬夜完成这两份800页Java面试核心知识原理+框架

Java~~~

Java 程序员 面试 编程语言 架构师

第11代酷睿处理器出色体验的奥秘原来是这个!

E科讯

SpringCloud Alibaba微服务实战六 - 配置隔离

AI乔治

Java 架构 微服务 Spring Cloud

SpringCloud Alibaba微服务实战七 - 分布式事务

AI乔治

Java 架构 微服务 Spring Cloud

字节跳动总监总结的开发笔记火了!在知乎上已超5000赞!

Java架构师迁哥

耗子尾汁,你居然还不懂什么是架构师?那你编码为了什么?还不看阿里人怎么判定吗?

小Q

Java 学习 编程 架构 面试

对话机器人70年:科幻与现实的交融

华为云开发者联盟

AI 机器人 对话

字节跳动的这份《算法中文手册》火了,完整版PDF开放下载!不少小伙伴靠这份指南成功掌握了算法的核心技能,成功拿到了 BATJ等大厂offer。

Java架构之路

Java 程序员 架构 面试 编程语言

年轻人不讲武德!Security五套「源码级」笔记哪里来的?

小Q

学习 编程 面试 spring security SpringCloud

对于CRM之于现代化企业的影响以及作用的分析

Learun

敏捷开发 CRM 客户关系管理

一次带你全面解析Nginx,从安装JDK开始讲起,收藏当手册

996小迁

Java 学习 编程 架构 面试

SpringCloud Alibaba微服务实战五 - 限流熔断

AI乔治

Java 架构 微服务 Spring Cloud

区块链+数字版权:区块链助力版权保护

13530558032

Mirador:用于可视化搜索复杂数据集的免费工具_大数据_张天雷_InfoQ精选文章